コード例 #1
0
def main(argv=None):
    if argv is None:
        argv = sys.argv

    # Parse command line
    (nalternatives, ncriteria, nprofiles, nlearning, seed, error) = parse_cmdline(argv)
    print "Input parameters"
    print "================"
    print "Nalternatives:", nalternatives
    print "Ncriteria:", ncriteria
    print "Nprofiles:", nprofiles
    print "Nlearning:", nlearning
    print "Seed:", seed

    # Create a model
    (alternatives, criteria, palternatives) = create_model(nalternatives, ncriteria, nprofiles)
    (pt, profiles, weights, lbda) = generate_random_data(seed, alternatives, criteria, palternatives)
    model = etri.electre_tri(pt, profiles, weights, lbda) 
    affectations = model.pessimist() 

    # Add errors in learning alternatives
    learning_alts = [ "a%d" % (i+1) for i in range(nlearning) ]
    add_errors_in_learning_alts(affectations, learning_alts, nprofiles, error)

    profs = []
    for profile in profiles:
        profs.append(profile['refs'])

    # Infer ELECTRE Tri parameters
    (iweights, iprofiles, ilbda, icompat, info) = etri_infer_parameters(learning_alts, criteria, pt, affectations, nprofiles, "models/etri_bm_weights_compat.mod", profiles=profs)

    # Apply ELECTRE Tri model with infered parameters 
    modeli = etri.electre_tri(pt, iprofiles, iweights, ilbda) 
    iaffectations = modeli.pessimist()

    # Print result
    print "Output"
    print "======"
    print "Time used:", info[0]
    print "Memory used:", info[1]
    debug.print_lambda(lbda, ilbda)
    debug.print_weights(weights, criteria, iweights)
    debug.print_profiles(profiles, criteria, iprofiles)
    debug.print_performance_table_with_assignements(pt, alternatives, criteria, affectations, iaffectations, icompat)
コード例 #2
0
ファイル: test_etri2.py プロジェクト: oso/etri-inference
pessimist = model.pessimist()
optimist = model.optimist()

#debug.print_performance_table_with_assignements(pt, alternatives, criteria, pessimist)

infile = glpk.create_input_file(learning_alts, criteria, pt, categories, categories_rank, pessimist)
(status, output) = glpk.solve_normalized(infile.name)
infile.close()

if status:
    sys.exit("gklp returned status %d" % status)

(iweights, iprofiles, ilbda, icompat) = glpk.parse_output(output, learning_alts, criteria)
if iweights == None:
    sys.exit("Invalid weights");
if iprofiles == None:
    sys.exit("Invalid profiles")
if ilbda == None:
    sys.exit("Invalid lambda")
if icompat == None:
    sys.exit("Invalid compat");

# Apply ELECTRE TRI model
modeli = etri.electre_tri(pt, iprofiles, iweights, ilbda)
ipessimist = model.pessimist()

debug.print_lambda(lbda, ilbda)
debug.print_weights(weights, criteria, iweights)
debug.print_profiles(profiles, criteria, iprofiles)
debug.print_performance_table_with_assignements(pt, alternatives, criteria, pessimist, ipessimist, icompat)