def automate(): number_of_zipped_files = len(get_all_files_in_directory(zipped_data_path)) number_of_raw_files = len(get_all_files_in_directory(raw_data_path)) number_of_filtered_files = len(get_all_files_in_directory(filtered_data_path)) number_of_individual_files = len(get_all_files_in_directory(individual_data_path)) if number_of_zipped_files == 0: logger.raise_exception('There are no .zip files to work with.', logger.LogicError) if number_of_raw_files == 0: extract_zip_files() if number_of_filtered_files == 0: filter_the_stock_files(raw_data_path, filtered_data_path) if number_of_individual_files == 0: combined_data_frame = load_all_stock_files() all_unique_names = combined_data_frame.symbol.values timer = Timer() for n in all_unique_names: timer.start_timer() local_data_frame = combined_data_frame[combined_data_frame.symbol == n] if len(local_data_frame) != 0: local_stock_path = str(str(individual_data_path) + n + '.csv') if not os.path.isfile(local_stock_path): local_data_frame.drop(local_data_frame.columns[0], axis=1, inplace=True) local_data_frame['date'] = pd.to_datetime(local_data_frame['date']) local_data_frame = local_data_frame.sort_values(by='date') create_csv_file(local_data_frame, local_stock_path) print('Length of local data frame: ' + str(len(local_data_frame)) + '\tLength of combined data: ' + str(len(combined_data_frame))) combined_data_frame = combined_data_frame[combined_data_frame.symbol != n] timer.end_timer() timer.print_time()
def code_to_test_01(): my_list = [] my_set = set() for x in range(10000): my_list.append(x) my_set.add(x) timer = Timer() timer.start_timer() z = 0 for y in range(10000): if my_list.__contains__(y): z += y timer.end_timer() timer.print_time() timer.start_timer() z = 0 for y in range(10000): if my_set.__contains__(y): z += y timer.end_timer() timer.print_time()
for un in list_of_all_unique_names: print(un) logger.log('Finished seperating all the data_xv for individual stocks.') exit(0) ''' logger.log('There are: ' + str(len(list_of_all_unique_names)) + ' unique stocks.') all_earnings = [] timer = Timer() inner_timer = Timer() logger.log('Starting the timer for the math code.') timer.start_timer() index = 0 bad_stocks = [] def perform_splits_on_stock(sl, data_frame): for s in sl: split_date = s.get_date() split_date = pd.to_datetime(split_date) data_frame.ix[data_frame.date <= split_date, 'open'] *= s.get_multiplier() data_frame.ix[data_frame.date <= split_date, 'high'] *= s.get_multiplier() data_frame.ix[data_frame.date <= split_date, 'low'] *= s.get_multiplier()