for size in target_sizes: split_targets.append(targets[offset:offset + size]) offset += size if args.cuda: inputs = inputs.cuda() out = model(inputs) out = out.transpose(0, 1) # TxNxH seq_length = out.size(0) sizes = Variable(input_percentages.mul_(int(seq_length)).int()) decoded_output = decoder.decode(out.data, sizes) target_strings = decoder.process_strings( decoder.convert_to_strings(split_targets)) wer, cer = 0, 0 for x in range(len(target_strings)): wer += decoder.wer(decoded_output[x], target_strings[x]) / float( len(target_strings[x].split())) cer += decoder.cer(decoded_output[x], target_strings[x]) / float( len(target_strings[x])) total_cer += cer total_wer += wer wer = total_wer / len(test_loader.dataset) cer = total_cer / len(test_loader.dataset) print('Validation Summary \t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format(wer=wer * 100, cer=cer * 100))
def main(): args = parser.parse_args() save_folder = args.save_folder loss_results, cer_results, wer_results = None, None, None if args.visdom: from visdom import Visdom viz = Visdom(server=args.visdom_server) opts = [ dict(title='Loss', ylabel='Loss', xlabel='Epoch'), dict(title='WER', ylabel='WER', xlabel='Epoch'), dict(title='CER', ylabel='CER', xlabel='Epoch') ] viz_windows = [None, None, None] loss_results, cer_results, wer_results = torch.Tensor( args.epochs), torch.Tensor(args.epochs), torch.Tensor(args.epochs) epochs = torch.arange(1, args.epochs + 1) if args.tensorboard: from logger import Logger try: os.makedirs(args.log_dir) except OSError as e: if e.errno == errno.EEXIST: print('Directory already exists.') for file in os.listdir(args.log_dir): file_path = os.path.join(args.log_dir, file) try: if os.path.isfile(file_path): os.unlink(file_path) except Exception as e: raise else: raise logger = TensorBoardLogger(args.log_dir) try: os.makedirs(save_folder) except OSError as e: if e.errno == errno.EEXIST: print('Directory already exists.') else: raise criterion = CTCLoss() with open(args.labels_path) as label_file: labels = str(''.join(json.load(label_file))) audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size, window_stride=args.window_stride, window=args.window, noise_dir=args.noise_dir, noise_prob=args.noise_prob, noise_levels=(args.noise_min, args.noise_max)) train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels, normalize=True, augment=args.augment) test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels, normalize=True, augment=False) train_loader = AudioDataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) rnn_type = args.rnn_type.lower() assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru" model = DeepSpeech(rnn_hidden_size=args.hidden_size, nb_layers=args.hidden_layers, labels=labels, rnn_type=supported_rnns[rnn_type], audio_conf=audio_conf, bidirectional=True) parameters = model.parameters() optimizer = torch.optim.SGD(parameters, lr=args.lr, momentum=args.momentum, nesterov=True) decoder = ArgMaxDecoder(labels) if args.continue_from: print("Loading checkpoint model %s" % args.continue_from) package = torch.load(args.continue_from) model.load_state_dict(package['state_dict']) optimizer.load_state_dict(package['optim_dict']) start_epoch = int(package.get( 'epoch', 1)) - 1 # Python index start at 0 for training start_iter = package.get('iteration', None) if start_iter is None: start_epoch += 1 # Assume that we saved a model after an epoch finished, so start at the next epoch. start_iter = 0 else: start_iter += 1 avg_loss = int(package.get('avg_loss', 0)) loss_results, cer_results, wer_results = package[ 'loss_results'], package['cer_results'], package['wer_results'] if args.visdom and \ package['loss_results'] is not None and start_epoch > 0: # Add previous scores to visdom graph x_axis = epochs[0:start_epoch] y_axis = [ loss_results[0:start_epoch], wer_results[0:start_epoch], cer_results[0:start_epoch] ] for x in range(len(viz_windows)): viz_windows[x] = viz.line( X=x_axis, Y=y_axis[x], opts=opts[x], ) if args.tensorboard and \ package['loss_results'] is not None and start_epoch > 0: # Previous scores to tensorboard logs for i in range(start_epoch): info = { 'Avg Train Loss': loss_results[i], 'Avg WER': wer_results[i], 'Avg CER': cer_results[i] } for tag, val in info.items(): logger.scalar_summary(tag, val, i + 1) else: avg_loss = 0 start_epoch = 0 start_iter = 0 if args.cuda: model = torch.nn.DataParallel(model).cuda() print(model) print("Number of parameters: %d" % DeepSpeech.get_param_size(model)) batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() inf = float("inf") for epoch in range(start_epoch, args.epochs): model.train() end = time.time() for i, (data) in enumerate(train_loader, start=start_iter): if i == len(train_loader): break inputs, targets, input_percentages, target_sizes = data # measure data loading time data_time.update(time.time() - end) inputs = Variable(inputs, requires_grad=True) target_sizes = Variable(target_sizes, requires_grad=False) targets = Variable(targets, requires_grad=False) if args.cuda: inputs = inputs.cuda() out = model(inputs) out = out.transpose(0, 1) # TxNxH seq_length = out.size(0) sizes = Variable(input_percentages.mul_(int(seq_length)).int(), requires_grad=False) loss = criterion(out, targets, sizes, target_sizes) loss = loss / inputs.size(0) # average the loss by minibatch loss_sum = loss.data.sum() if loss_sum == inf or loss_sum == -inf: print("WARNING: received an inf loss, setting loss value to 0") loss_value = 0 else: loss_value = loss.data[0] avg_loss += loss_value losses.update(loss_value, inputs.size(0)) # compute gradient optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm(model.parameters(), args.max_norm) # SGD step optimizer.step() if args.cuda: torch.cuda.synchronize() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if not args.silent: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format( (epoch + 1), (i + 1), len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses)) if args.checkpoint_per_batch > 0 and i > 0 and ( i + 1) % args.checkpoint_per_batch == 0: file_path = '%s/deepspeech_checkpoint_epoch_%d_iter_%d.pth.tar' % ( save_folder, epoch + 1, i + 1) print("Saving checkpoint model to %s" % file_path) torch.save( DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, iteration=i, loss_results=loss_results, wer_results=wer_results, cer_results=cer_results, avg_loss=avg_loss), file_path) del loss del out avg_loss /= len(train_loader) print('Training Summary Epoch: [{0}]\t' 'Average Loss {loss:.3f}\t'.format(epoch + 1, loss=avg_loss)) start_iter = 0 # Reset start iteration for next epoch total_cer, total_wer = 0, 0 model.eval() for i, (data) in enumerate(test_loader): # test inputs, targets, input_percentages, target_sizes = data inputs = Variable(inputs, volatile=True, requires_grad=False) # unflatten targets split_targets = [] offset = 0 for size in target_sizes: split_targets.append(targets[offset:offset + size]) offset += size if args.cuda: inputs = inputs.cuda() out = model(inputs) out = out.transpose(0, 1) # TxNxH seq_length = out.size(0) sizes = Variable(input_percentages.mul_(int(seq_length)).int(), volatile=True, requires_grad=False) decoded_output = decoder.decode(out.data, sizes) target_strings = decoder.process_strings( decoder.convert_to_strings(split_targets)) wer, cer = 0, 0 for x in range(len(target_strings)): wer += decoder.wer(decoded_output[x], target_strings[x]) / float( len(target_strings[x].split())) cer += decoder.cer(decoded_output[x], target_strings[x]) / float( len(target_strings[x])) total_cer += cer total_wer += wer if args.cuda: torch.cuda.synchronize() del out wer = total_wer / len(test_loader.dataset) cer = total_cer / len(test_loader.dataset) wer *= 100 cer *= 100 loss_results[epoch] = avg_loss wer_results[epoch] = wer cer_results[epoch] = cer print('Validation Summary Epoch: [{0}]\t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer)) if args.visdom: # epoch += 1 x_axis = epochs[0:epoch + 1] y_axis = [ loss_results[0:epoch + 1], wer_results[0:epoch + 1], cer_results[0:epoch + 1] ] for x in range(len(viz_windows)): if viz_windows[x] is None: viz_windows[x] = viz.line( X=x_axis, Y=y_axis[x], opts=opts[x], ) else: viz.line( X=x_axis, Y=y_axis[x], win=viz_windows[x], update='replace', ) if args.tensorboard: info = {'Avg Train Loss': avg_loss, 'Avg WER': wer, 'Avg CER': cer} for tag, val in info.items(): logger.scalar_summary(tag, val, epoch + 1) if args.log_params: for tag, value in model.named_parameters(): tag = tag.replace('.', '/') logger.histo_summary(tag, to_np(value), epoch + 1) logger.histo_summary(tag + '/grad', to_np(value.grad), epoch + 1) if args.checkpoint: file_path = '%s/deepspeech_%d.pth.tar' % (save_folder, epoch + 1) torch.save( DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results, wer_results=wer_results, cer_results=cer_results), file_path) # anneal lr optim_state = optimizer.state_dict() optim_state['param_groups'][0][ 'lr'] = optim_state['param_groups'][0]['lr'] / args.learning_anneal optimizer.load_state_dict(optim_state) print('Learning rate annealed to: {lr:.6f}'.format( lr=optim_state['param_groups'][0]['lr'])) avg_loss = 0 if not args.no_bucketing and epoch == 0: print("Switching to bucketing sampler for following epochs") train_dataset = SpectrogramDatasetWithLength( audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels, normalize=True, augment=args.augment) sampler = BucketingSampler(train_dataset) train_loader.sampler = sampler torch.save(DeepSpeech.serialize(model, optimizer=optimizer), args.final_model_path)
def main(): args = parser.parse_args() save_folder = args.save_folder if args.visdom: from visdom import Visdom viz = Visdom() opts = [ dict(title='Loss', ylabel='Loss', xlabel='Epoch'), dict(title='WER', ylabel='WER', xlabel='Epoch'), dict(title='CER', ylabel='CER', xlabel='Epoch') ] viz_windows = [None, None, None] loss_results, cer_results, wer_results = torch.Tensor( args.epochs), torch.Tensor(args.epochs), torch.Tensor(args.epochs) epochs = torch.range(1, args.epochs) try: os.makedirs(save_folder) except OSError as e: if e.errno == errno.EEXIST: print('Directory already exists.') else: raise criterion = CTCLoss() with open(args.labels_path) as label_file: labels = str(''.join(json.load(label_file))) audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size, window_stride=args.window_stride, window=args.window) train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels, normalize=True) test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels, normalize=True) train_loader = AudioDataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) model = DeepSpeech(rnn_hidden_size=args.hidden_size, nb_layers=args.hidden_layers, num_classes=len(labels)) decoder = ArgMaxDecoder(labels) if args.cuda: model = torch.nn.DataParallel(model).cuda() print(model) parameters = model.parameters() optimizer = torch.optim.SGD(parameters, lr=args.lr, momentum=args.momentum, nesterov=True) batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() for epoch in range(args.epochs): model.train() end = time.time() avg_loss = 0 for i, (data) in enumerate(train_loader): inputs, targets, input_percentages, target_sizes = data # measure data loading time data_time.update(time.time() - end) inputs = Variable(inputs) target_sizes = Variable(target_sizes) targets = Variable(targets) if args.cuda: inputs = inputs.cuda() out = model(inputs) out = out.transpose(0, 1) # TxNxH seq_length = out.size(0) sizes = Variable(input_percentages.mul_(int(seq_length)).int()) loss = criterion(out, targets, sizes, target_sizes) loss = loss / inputs.size(0) # average the loss by minibatch loss_sum = loss.data.sum() inf = float("inf") if loss_sum == inf or loss_sum == -inf: print("WARNING: received an inf loss, setting loss value to 0") loss_value = 0 else: loss_value = loss.data[0] avg_loss += loss_value losses.update(loss_value, inputs.size(0)) # compute gradient optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm(model.parameters(), args.max_norm) # SGD step optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if not args.silent: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format( (epoch + 1), (i + 1), len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses)) avg_loss /= len(train_loader) print('Training Summary Epoch: [{0}]\t' 'Average Loss {loss:.3f}\t'.format(epoch + 1, loss=avg_loss)) total_cer, total_wer = 0, 0 for i, (data) in enumerate(test_loader): # test inputs, targets, input_percentages, target_sizes = data inputs = Variable(inputs) # unflatten targets split_targets = [] offset = 0 for size in target_sizes: split_targets.append(targets[offset:offset + size]) offset += size if args.cuda: inputs = inputs.cuda() out = model(inputs) out = out.transpose(0, 1) # TxNxH seq_length = out.size(0) sizes = Variable(input_percentages.mul_(int(seq_length)).int()) decoded_output = decoder.decode(out.data, sizes) target_strings = decoder.process_strings( decoder.convert_to_strings(split_targets)) wer, cer = 0, 0 for x in range(len(target_strings)): wer += decoder.wer(decoded_output[x], target_strings[x]) / float( len(target_strings[x].split())) cer += decoder.cer(decoded_output[x], target_strings[x]) / float( len(target_strings[x])) total_cer += cer total_wer += wer wer = total_wer / len(test_loader.dataset) cer = total_cer / len(test_loader.dataset) wer *= 100 cer *= 100 print('Validation Summary Epoch: [{0}]\t' 'Average WER {wer:.0f}\t' 'Average CER {cer:.0f}\t'.format(epoch + 1, wer=wer, cer=cer)) if args.visdom: loss_results[epoch] = avg_loss wer_results[epoch] = wer cer_results[epoch] = cer epoch += 1 x_axis = epochs[0:epoch] y_axis = [ loss_results[0:epoch], wer_results[0:epoch], cer_results[0:epoch] ] for x in range(len(viz_windows)): if viz_windows[x] is None: viz_windows[x] = viz.line( X=x_axis, Y=y_axis[x], opts=opts[x], ) else: viz.line( X=x_axis, Y=y_axis[x], win=viz_windows[x], update='replace', ) if args.epoch_save: file_path = '%s/deepspeech_%d.pth.tar' % (save_folder, epoch) torch.save(checkpoint(model, args, len(labels), epoch), file_path) torch.save(checkpoint(model, args, len(labels)), args.final_model_path)