コード例 #1
0
ファイル: matfuncs.py プロジェクト: mbentz80/jzigbeercp
def sqrtm(A,disp=1):
    """Matrix square root

    If disp is non-zero display warning if singular matrix.
    If disp is zero then return residual ||A-X*X||_F / ||A||_F

    Uses algorithm by Nicholas J. Higham
    """
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError, "Non-matrix input to matrix function."
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape

    R = sb.zeros((n,n),T.dtype.char)
    for j in range(n):
        R[j,j] = sqrt(T[j,j])
        for i in range(j-1,-1,-1):
            s = 0
            for k in range(i+1,j):
                s = s + R[i,k]*R[k,j]
            R[i,j] = (T[i,j] - s)/(R[i,i] + R[j,j])

    R, Z = all_mat(R,Z)
    X = (Z * R * Z.H)

    if disp:
        nzeig = sb.any(sb.diag(T)==0)
        if nzeig:
            print "Matrix is singular and may not have a square root."
        return X.A
    else:
        arg2 = norm(X*X - A,'fro')**2 / norm(A,'fro')
        return X.A, arg2
コード例 #2
0
ファイル: matfuncs.py プロジェクト: mbentz80/jzigbeercp
def funm(A,func,disp=1):
    """matrix function for arbitrary callable object func.
    """
    # func should take a vector of arguments (see vectorize if
    #  it needs wrapping.

    # Perform Shur decomposition (lapack ?gees)
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError, "Non-matrix input to matrix function."
    if A.dtype.char in ['F', 'D', 'G']:
        cmplx_type = 1
    else:
        cmplx_type = 0
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape
    F = diag(func(diag(T)))  # apply function to diagonal elements
    F = F.astype(T.dtype.char) # e.g. when F is real but T is complex

    minden = abs(T[0,0])

    # implement Algorithm 11.1.1 from Golub and Van Loan
    #                 "matrix Computations."
    for p in range(1,n):
        for i in range(1,n-p+1):
            j = i + p
            s = T[i-1,j-1] * (F[j-1,j-1] - F[i-1,i-1])
            ksl = slice(i,j-1)
            val = dot(T[i-1,ksl],F[ksl,j-1]) - dot(F[i-1,ksl],T[ksl,j-1])
            s = s + val
            den = T[j-1,j-1] - T[i-1,i-1]
            if den != 0.0:
                s = s / den
            F[i-1,j-1] = s
            minden = min(minden,abs(den))

    F = dot(dot(Z, F),transpose(conjugate(Z)))
    if not cmplx_type:
        F = toreal(F)

    tol = {0:feps, 1:eps}[_array_precision[F.dtype.char]]
    if minden == 0.0:
        minden = tol
    err = min(1, max(tol,(tol/minden)*norm(triu(T,1),1)))
    if product(ravel(logical_not(isfinite(F))),axis=0):
        err = Inf
    if disp:
        if err > 1000*tol:
            print "Result may be inaccurate, approximate err =", err
        return F
    else:
        return F, err
コード例 #3
0
def sqrtm(A,disp=1):
    """Matrix square root.

    Parameters
    ----------
    A : array, shape(M,M)
        Matrix whose square root to evaluate
    disp : boolean
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    sgnA : array, shape(M,M)
        Value of the sign function at A

    (if disp == False)
    errest : float
        Frobenius norm of the estimated error, ||err||_F / ||A||_F

    Notes
    -----
    Uses algorithm by Nicholas J. Higham

    """
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError, "Non-matrix input to matrix function."
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape

    R = np.zeros((n,n),T.dtype.char)
    for j in range(n):
        R[j,j] = sqrt(T[j,j])
        for i in range(j-1,-1,-1):
            s = 0
            for k in range(i+1,j):
                s = s + R[i,k]*R[k,j]
            R[i,j] = (T[i,j] - s)/(R[i,i] + R[j,j])

    R, Z = all_mat(R,Z)
    X = (Z * R * Z.H)

    if disp:
        nzeig = np.any(diag(T)==0)
        if nzeig:
            print "Matrix is singular and may not have a square root."
        return X.A
    else:
        arg2 = norm(X*X - A,'fro')**2 / norm(A,'fro')
        return X.A, arg2
コード例 #4
0
def funm(A,func,disp=1):
    """Evaluate a matrix function specified by a callable.

    Returns the value of matrix-valued function f at A. The function f
    is an extension of the scalar-valued function func to matrices.

    Parameters
    ----------
    A : array, shape(M,M)
        Matrix at which to evaluate the function
    func : callable
        Callable object that evaluates a scalar function f.
        Must be vectorized (eg. using vectorize).
    disp : boolean
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    fA : array, shape(M,M)
        Value of the matrix function specified by func evaluated at A

    (if disp == False)
    errest : float
        1-norm of the estimated error, ||err||_1 / ||A||_1

    """
    # Perform Shur decomposition (lapack ?gees)
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError, "Non-matrix input to matrix function."
    if A.dtype.char in ['F', 'D', 'G']:
        cmplx_type = 1
    else:
        cmplx_type = 0
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape
    F = diag(func(diag(T)))  # apply function to diagonal elements
    F = F.astype(T.dtype.char) # e.g. when F is real but T is complex

    minden = abs(T[0,0])

    # implement Algorithm 11.1.1 from Golub and Van Loan
    #                 "matrix Computations."
    for p in range(1,n):
        for i in range(1,n-p+1):
            j = i + p
            s = T[i-1,j-1] * (F[j-1,j-1] - F[i-1,i-1])
            ksl = slice(i,j-1)
            val = dot(T[i-1,ksl],F[ksl,j-1]) - dot(F[i-1,ksl],T[ksl,j-1])
            s = s + val
            den = T[j-1,j-1] - T[i-1,i-1]
            if den != 0.0:
                s = s / den
            F[i-1,j-1] = s
            minden = min(minden,abs(den))

    F = dot(dot(Z, F),transpose(conjugate(Z)))
    if not cmplx_type:
        F = toreal(F)

    tol = {0:feps, 1:eps}[_array_precision[F.dtype.char]]
    if minden == 0.0:
        minden = tol
    err = min(1, max(tol,(tol/minden)*norm(triu(T,1),1)))
    if product(ravel(logical_not(isfinite(F))),axis=0):
        err = Inf
    if disp:
        if err > 1000*tol:
            print "Result may be inaccurate, approximate err =", err
        return F
    else:
        return F, err