コード例 #1
0
ファイル: benchmarks.py プロジェクト: hbcbh1999/dedaLES
def init_rayleigh_benard_benchmark(nx=64, ny=64, nz=16, closure=None):
    Lx, Ly, Lz = 25.0, 25.0, 1.0 # Domain

    # Parameters
    Pr = 1.0       # Prandtl number
    f = 0.0        # Coriolis parameter
    κ = 1.0        # Thermal diffusivity
    ε = 0.8        # Perturbation above criticality
    a = 1e-3       # Noise amplitude for initial condition

    # Constants
    Ra_critical = 1707.762
    Ra = Ra_critical + ε
    ν = Pr*κ                   # Viscosity
    Bz = -Ra*Pr                 # Unstable buoyancy gradient

    # Construct model
    model = dedaLES.BoussinesqChannelFlow(Lx=Lx, Ly=Ly, Lz=Lz, nx=nx, ny=ny, nz=nz,
                                          f=f, ν=ν, κ=κ, B0=Bz*Lz, a=a, closure=closure)

    model.set_bc("nopenetration", "top", "bottom")
    model.set_bc("freeslip", "top", "bottom")
    model.problem.add_bc("right(b) = B0")
    model.problem.add_bc("left(b) = 0")

    return model
コード例 #2
0
ファイル: basic_example.py プロジェクト: tomchor/RBC
import dedaLES

from dedaLES import mpiprint

# Basics
mpiprint('')

# 1. DNS of Navier-Stokes
dns_model = dedaLES.NavierStokesTriplyPeriodicFlow(nx=4, ny=4, nz=4, ν=1)
dns_model.build_solver()

mpiprint("\nDNS Navier-Stokes model built!\n")

# 2. LES of Navier-Stokes
les_model = dedaLES.NavierStokesTriplyPeriodicFlow(
    nx=4, ny=4, nz=4, ν=1, closure=dedaLES.ConstantSmagorinsky())
les_model.build_solver()

mpiprint("\nLES Navier-Stokes model built!\n")

# 2. Boussinesq in a channel
bouss_model = dedaLES.BoussinesqChannelFlow(nx=4, ny=4, nz=4, ν=1, κ=0.1)

for bc in ["no penetration", "no slip", "no flux"]:
    bouss_model.set_bc(bc, "top", "bottom")

bouss_model.build_solver()

mpiprint("\nBoussinesq model built!\n")
コード例 #3
0
#dt_safety        = params['dt_safety']
stats_cadence    = 100
averages_cadence = 10
analysis_cadence = 100
run_time         = day
max_writes       = 100

if debug:
    nx = ny = nz = 8
    dt_cadence = np.inf
    initial_dt = 1e-16
    run_time = 10*initial_dt
    stats_cadence = analysis_cadence = averages_cadence = 1

# Construct model
model = dedaLES.BoussinesqChannelFlow(Lx=Lx, Ly=Ly, Lz=Lz, nx=nx, ny=ny, nz=nz, ν=ν, κ=κ, closure=closure, case=int(case),
                                      surface_buoyancy_flux=surface_buoyancy_flux, surface_bz=surface_bz, initial_N2=initial_N2)

Δx = Lx/nx
Δy = Ly/ny
Δz_min, Δz_max = dedaLES.grid_stats(model, 2)
Δmin = min(Δx, Δy, Δz_min)

logger.info("""\n
    *** Convection into a linearly stratified fluid ***

                       Simulation info
                       ---------------

            surface heat_flux : {:.2e} W m⁻²
        surface buoyancy flux : {:.2e} m² s⁻³
コード例 #4
0
CFL_cadence = 10
stats_cadence = 100
analysis_cadence = 100
run_time = 2*hour
max_writes = 1000

if debug:
    nx = ny = nz = 8
    CFL_cadence = np.inf
    initial_dt = 1e-16
    run_time = 10*initial_dt
    stats_cadence = analysis_cadence = 1

# Construct model
closure = None
model = dedaLES.BoussinesqChannelFlow(Lx=Lx, Ly=Ly, Lz=Lz, nx=nx, ny=ny, nz=nz, ν=ν, κ=κ, closure=closure,
                                      surface_flux=surface_flux, surface_bz=surface_bz, initial_N2=initial_N2)

Δx = Lx/nx
Δy = Ly/ny
Δz_min, Δz_max = dedaLES.grid_stats(model, 2)

logger.info("""\n
    *** Convection into a linearly stratified fluid ***

                       Simulation info
                       ---------------

                            Q : {:.2e} m C s⁻¹
        surface buoyancy flux : {:.2e} m² s⁻³
                          1/N : {:.2e} s
                   initial dt : {:.2e} s
コード例 #5
0
Ra = 1e5  # Rayleigh number. Ra = Δb*L^3 / ν*κ = Δb*L^3*Pr / ν^2
Pr = 0.7  # Prandtl number
a = 1e-1  # Noise amplitude for initial condition
Δb = 1.0  # Buoyancy difference

# Calculated parameters
ν = np.sqrt(Pr / Ra)  # Viscosity. ν = sqrt(Pr/Ra) with Lz=Δb=1
κ = ν / Pr  # Thermal diffusivity

# Construct model
closure = None  #dedaLES.AnisotropicMinimumDissipation() #dedaLES.ConstantSmagorinsky()
model = dedaLES.BoussinesqChannelFlow(Lx=1,
                                      Ly=1,
                                      Lz=6,
                                      nx=64,
                                      ny=64,
                                      nz=32,
                                      ν=ν,
                                      κ=κ,
                                      Δb=1,
                                      closure=closure)

model.set_bc("no penetration", "top", "bottom")
model.set_bc("no slip", "top", "bottom")
model.problem.add_bc("right(b) = 0")
model.problem.add_bc("left(b) = Δb")

model.build_solver()

# Set initial condition: unstable buoyancy grad + random perturbations
noise = a * dedaLES.random_noise(
    model.domain) * model.z * (model.Lz - model.z) / model.Lz**2,
コード例 #6
0
nx = ny = 128               # Horizontal resolution
nz = 34                     # Vertical resolution
Lx = Ly = 3840.0            # Domain horizontal extent [m]
Lz = 1020                   # Domain vertical extent [m]
a = 1e-2                    # Non-dimensional initial noise amplitude
dt = 90.0                   # Timestep

# Calculated parameters
bz_surf = Q*α*g / (cP*ρ0*κ) # Unstable surface buoyancy gradient [s⁻²]
b_init = (Lz-h0)*bz_deep    # Initial buoyancy at bottom of domain
b_noise = a*b_init          # Noise amplitude for initial buoyancy condition

# Construct model
closure = dedaLES.ConstantSmagorinsky()
model = dedaLES.BoussinesqChannelFlow(Lx=Lx, Ly=Ly, Lz=Lz, nx=nx, ny=ny, nz=nz, ν=ν, κ=κ, zbottom=-Lz
                                      bz_deep=bz_deep, bz_surf=bz_surf, tb=day/2, closure=closure, H=Lz)
    
# Boundary conditions
model.set_bc("no penetration", "top", "bottom")
model.set_bc("free slip", "top", "bottom")
model.set_tracer_gradient_bc("b", "top", gradient="bz_surf") #*tanh(t/tb)")
model.set_tracer_gradient_bc("b", "bottom", gradient="bz_deep")

model.build_solver()

# Initial condition
def smoothstep(z, d): 
    return 0.5*(1 + np.tanh(z/d))

b0 = bz_deep * (model.z + h0) * smoothstep(-model.z-h0, d)
コード例 #7
0
ファイル: amderror.py プロジェクト: wenegrat/dedaLES
from dedalus.extras import flow_tools
import dedaLES

logger = logging.getLogger(__name__)

a = 10.0
dt = 1e-4
nx = nz = 32
ny = 4

closure = dedaLES.AnisotropicMinimumDissipation()
#closure = dedaLES.ConstantSmagorinsky()
#closure = None
model = dedaLES.BoussinesqChannelFlow(nx=nx,
                                      ny=ny,
                                      nz=nz,
                                      ν=1,
                                      κ=1,
                                      closure=closure)

model.set_bc("no penetration", "top", "bottom")
model.set_bc("no slip", "top", "bottom")
model.set_bc("no flux", "top", "bottom")
model.build_solver()

# Initial condition
fields = {}
for field in ['u', 'v', 'w', 'b']:
    noise = dedaLES.random_noise(model.domain)
    pert = a * noise * model.z * (1 - model.z)
    fields[field] = pert
コード例 #8
0
    closure: {}\n\n""".format(Ra, nx, nz, closure_name))

##
## Spinup!
##

nx_spinup = int(nx / spinup_coarsening_factor)
ny_spinup = int(ny / spinup_coarsening_factor)
nz_spinup = int(nz / spinup_coarsening_factor)

spinup_model = dedaLES.BoussinesqChannelFlow(Lx=Lx,
                                             Ly=Ly,
                                             Lz=Lz,
                                             nx=nx_spinup,
                                             ny=ny_spinup,
                                             nz=nz_spinup,
                                             ν=ν,
                                             κ=κ,
                                             Δb=Δb,
                                             closure=closure,
                                             Ra=Ra)
set_rayleigh_benard_bcs(spinup_model)
spinup_model.build_solver(timestepper='SBDF3')

# Set initial condition: unstable buoyancy grad + random perturbations
noise = a * dedaLES.random_noise(
    spinup_model.domain) * spinup_model.z * (Lz - spinup_model.z) / Lz**2,
spinup_model.set_fields(u=noise,
                        v=noise,
                        w=noise,
                        b=spinup_model.z / Lz - noise)
コード例 #9
0
# Parameters
Pr = 1.0        # Prandtl number
f  = 0.0        # Coriolis parameter
κ  = 1.0        # Thermal diffusivity 
ε  = 0.8        # Perturbation above criticality
a  = 1e-3       # Noise amplitude for initial condition

# Constants
Ra_critical = 1707.762
Ra = Ra_critical + ε
ν  = Pr*κ                   # Viscosity 
Bz = -Ra*Pr                 # Unstable buoyancy gradient

# Construct model
model = dedaLES.BoussinesqChannelFlow(Lx=Lx, Ly=Ly, Lz=Lz, 
                                      nx=nx, ny=ny, nz=nz, 
                                      ν=ν, κ=κ, B0=Bz*Lz, closure=dedaLES.ConstantSmagorinsky())

model.set_bc("nopenetration", "top", "bottom")
model.set_bc("freeslip", "top", "bottom")
model.problem.add_bc("right(b) = B0")
model.problem.add_bc("left(b) = 0")

model.build_solver()

# Random perturbations, initialized globally for same results in parallel
noise = dedaLES.random_noise(model.domain)

# Linear background + perturbations damped at walls
z = model.z
pert = a * noise * z * (Lz - z)
コード例 #10
0
Δb = 1.0  # Buoyancy difference

# Calculated parameters
ν = np.sqrt(Δb * Pr * Lz**3 / Ra)  # Viscosity. ν = sqrt(Pr/Ra) with Lz=Δb=1
κ = ν / Pr  # Thermal diffusivity

# Construct model
#closure = dedaLES.AnisotropicMinimumDissipation()
#closure = dedaLES.ConstantSmagorinsky()
closure = None
model = dedaLES.BoussinesqChannelFlow(Lx=Lx,
                                      Ly=Ly,
                                      Lz=Lz,
                                      nx=nx,
                                      ny=ny,
                                      nz=nz,
                                      ν=ν,
                                      κ=κ,
                                      Δb=Δb,
                                      closure=closure,
                                      nu=ν,
                                      V=Lx * Ly * Lz)

model.set_bc("no penetration", "top", "bottom")
model.set_bc("no slip", "top", "bottom")
model.problem.add_bc("right(b) = 0")
model.problem.add_bc("left(b) = Δb")
model.problem.substitutions[
    'ε'] = "ν*(ux*ux + uy*uy + uz*uz + vx*vx + vy*vy + vz*vz + wx*wx + wy*wy + wz*wz)"

model.build_solver()