コード例 #1
0
ファイル: test_lbvp.py プロジェクト: jsoishi/dedalus
def test_heat_ball_cart(Nmax, Lmax, dtype):
    # Bases
    dealias = 1
    c, d, b, phi, theta, r, x, y, z = build_ball(2 * (Lmax + 1),
                                                 Lmax + 1,
                                                 Nmax + 1,
                                                 dealias=dealias,
                                                 dtype=dtype)
    xr = radius_ball * np.cos(phi) * np.sin(theta)
    yr = radius_ball * np.sin(phi) * np.sin(theta)
    zr = radius_ball * np.cos(theta)
    # Fields
    u = field.Field(name='u', dist=d, bases=(b, ), dtype=dtype)
    τu = field.Field(name='u', dist=d, bases=(b.S2_basis(), ), dtype=dtype)
    f = field.Field(name='a', dist=d, bases=(b, ), dtype=dtype)
    f['g'] = 12 * x**2 - 6 * y + 2
    g = field.Field(name='a', dist=d, bases=(b.S2_basis(), ), dtype=dtype)
    g['g'] = xr**4 - yr**3 + zr**2
    # Problem
    Lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    problem = problems.LBVP([u, τu])
    problem.add_equation((Lap(u) + Lift(τu), f))
    problem.add_equation((u(r=radius_ball), g))
    # Solver
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    # Check solution
    u_true = x**4 - y**3 + z**2
    assert np.allclose(u['g'], u_true)
コード例 #2
0
ファイル: test_lbvp.py プロジェクト: jsoishi/dedalus
def test_heat_shell(Nmax, Lmax, dtype):
    # Bases
    dealias = 1
    c, d, b, phi, theta, r, x, y, z = build_shell(2 * (Lmax + 1),
                                                  Lmax + 1,
                                                  Nmax + 1,
                                                  dealias=dealias,
                                                  dtype=dtype)
    r0, r1 = b.radial_basis.radii
    # Fields
    u = field.Field(name='u', dist=d, bases=(b, ), dtype=dtype)
    τu1 = field.Field(name='τu1', dist=d, bases=(b.S2_basis(), ), dtype=dtype)
    τu2 = field.Field(name='τu2', dist=d, bases=(b.S2_basis(), ), dtype=dtype)
    F = field.Field(name='a', dist=d, bases=(b, ), dtype=dtype)
    F['g'] = 6
    # Problem
    Lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A, n: operators.Lift(A, b, n)
    problem = problems.LBVP([u, τu1, τu2])
    problem.add_equation((Lap(u) + Lift(τu1, -1) + Lift(τu2, -2), F))
    problem.add_equation((u(r=r0), 0))
    problem.add_equation((u(r=r1), 0))
    # Solver
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    # Check solution
    u_true = r**2 + 6 / r - 7
    assert np.allclose(u['g'], u_true)
コード例 #3
0
ファイル: test_lbvp.py プロジェクト: jsoishi/dedalus
def test_vector_heat_disk_dirichlet(Nr, Nphi, dtype):
    # Bases
    dealias = 1
    c, d, b, phi, r, x, y = build_disk(Nphi, Nr, dealias=dealias, dtype=dtype)
    # Fields
    u = field.Field(name='u',
                    dist=d,
                    bases=(b, ),
                    tensorsig=(c, ),
                    dtype=dtype)
    τu = field.Field(name='u',
                     dist=d,
                     bases=(b.S1_basis(), ),
                     tensorsig=(c, ),
                     dtype=dtype)
    v = field.Field(name='u',
                    dist=d,
                    bases=(b, ),
                    tensorsig=(c, ),
                    dtype=dtype)
    ex = np.array([-np.sin(phi), np.cos(phi)])
    ey = np.array([np.cos(phi), np.sin(phi)])
    v['g'] = (x + 4 * y) * ex
    vr = operators.RadialComponent(v(r=radius_disk))
    vph = operators.AzimuthalComponent(v(r=radius_disk))
    # Problem
    Lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    problem = problems.LBVP([u, τu])
    problem.add_equation((Lap(u) + Lift(τu), 0))
    problem.add_equation((u(r=radius_disk), v(r=radius_disk)))
    # Solver
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    assert np.allclose(u['g'], v['g'])
コード例 #4
0
ファイル: test_lbvp.py プロジェクト: jsoishi/dedalus
def test_heat_ball(Nmax, Lmax, dtype):
    # Bases
    dealias = 1
    c, d, b, phi, theta, r, x, y, z = build_ball(2 * (Lmax + 1),
                                                 Lmax + 1,
                                                 Nmax + 1,
                                                 dealias=dealias,
                                                 dtype=dtype)
    # Fields
    u = field.Field(name='u', dist=d, bases=(b, ), dtype=dtype)
    τu = field.Field(name='u', dist=d, bases=(b.S2_basis(), ), dtype=dtype)
    F = field.Field(name='a', dist=d, bases=(b, ), dtype=dtype)
    F['g'] = 6
    # Problem
    Lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    problem = problems.LBVP([u, τu])
    problem.add_equation((Lap(u) + Lift(τu), F))
    problem.add_equation((u(r=radius_ball), 0))
    # Solver
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    # Check solution
    u_true = r**2 - 1
    assert np.allclose(u['g'], u_true)
コード例 #5
0
ファイル: test_evp.py プロジェクト: jsoishi/dedalus
def test_disk_bessel_zeros(Nphi, Nr, m, radius, dtype):
    # Bases
    c = coords.PolarCoordinates('phi', 'r')
    d = distributor.Distributor((c, ))
    b = basis.DiskBasis(c, (Nphi, Nr), radius=radius, dtype=dtype)
    b_S1 = b.S1_basis()
    phi, r = b.local_grids((1, 1))
    # Fields
    f = field.Field(dist=d, bases=(b, ), dtype=dtype)
    τ_f = field.Field(dist=d, bases=(b_S1, ), dtype=dtype)
    k2 = field.Field(name='k2', dist=d, dtype=dtype)
    # Parameters and operators
    lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    # Bessel equation: k^2*f + lap(f) = 0
    problem = problems.EVP([f, τ_f], k2)
    problem.add_equation((k2 * f + lap(f) + Lift(τ_f), 0))
    problem.add_equation((f(r=radius), 0))
    # Solver
    solver = solvers.EigenvalueSolver(problem)
    print(solver.subproblems[0].group)
    for sp in solver.subproblems:
        if sp.group[0] == m:
            break
    else:
        raise ValueError("Could not find subproblem with m = %i" % m)
    solver.solve_dense(sp)
    # Compare eigenvalues
    n_compare = 5
    selected_eigenvalues = np.sort(solver.eigenvalues)[:n_compare]
    analytic_eigenvalues = (spec.jn_zeros(m, n_compare) / radius)**2
    assert np.allclose(selected_eigenvalues, analytic_eigenvalues)
コード例 #6
0
ファイル: test_lbvp.py プロジェクト: jsoishi/dedalus
def test_scalar_heat_disk(Nr, Nphi, dtype):
    # Bases
    dealias = 1
    c, d, b, phi, r, x, y = build_disk(Nphi, Nr, dealias=dealias, dtype=dtype)
    xr = radius_disk * np.cos(phi)
    yr = radius_disk * np.sin(phi)
    # Fields
    u = field.Field(name='u', dist=d, bases=(b, ), dtype=dtype)
    τu = field.Field(name='u', dist=d, bases=(b.S1_basis(), ), dtype=dtype)
    f = field.Field(dist=d, bases=(b, ), dtype=dtype)
    f['g'] = 6 * x - 2
    g = field.Field(dist=d, bases=(b.S1_basis(), ), dtype=dtype)
    g['g'] = xr**3 - yr**2
    # Problem
    Lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    problem = problems.LBVP([u, τu])
    problem.add_equation((Lap(u) + Lift(τu), f))
    problem.add_equation((u(r=radius_disk), g))
    # Solver
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    # Check solution
    u_true = x**3 - y**2
    assert np.allclose(u['g'], u_true)
コード例 #7
0
ファイル: test_ivp.py プロジェクト: jsoishi/dedalus
def test_mag_BC(N, dtype):
    # Bases
    c, d, b, phi, theta, r, x, y, z = build_ball(N,
                                                 N,
                                                 N,
                                                 1,
                                                 1,
                                                 dtype,
                                                 grid_scale=1)
    # Fields
    A = d.VectorField(c, name='A', bases=b)
    Phi = d.Field(name='Phi', bases=b)
    tau_A = d.VectorField(c, name='A_tau', bases=b.S2_basis())
    Lift = lambda A: operators.Lift(A, b, -1)
    # Problem
    problem = problems.IVP([A, Phi, tau_A], namespace=locals())
    problem.add_equation("div(A) = 0")
    problem.add_equation("dt(A) - grad(Phi) - lap(A) + Lift(tau_A) = 0")
    problem.add_equation("angular(A(r=1), index=0) = 0")
    problem.add_equation("Phi(r=1) = 0")
    # Solver
    solver = solvers.InitialValueSolver(problem, timesteppers.SBDF1)
    dt = 1e-5
    iter = 10
    for i in range(iter):
        solver.step(dt)
コード例 #8
0
def test_heat_ball_nlbvp(Nr, dtype, dealias):
    radius = 2
    ncc_cutoff = 1e-10
    tolerance = 1e-10
    # Bases
    c = coords.SphericalCoordinates('phi', 'theta', 'r')
    d = distributor.Distributor((c,))
    b = basis.BallBasis(c, (1, 1, Nr), radius=radius, dtype=dtype, dealias=dealias)
    bs = b.S2_basis(radius=radius)
    phi, theta, r = b.local_grids((1, 1, 1))
    # Fields
    u = field.Field(name='u', dist=d, bases=(b,), dtype=dtype)
    τ = field.Field(name='τ', dist=d, bases=(bs,), dtype=dtype)
    F = field.Field(name='F', dist=d, bases=(b,), dtype=dtype) # todo: make this constant
    F['g'] = 6
    # Problem
    Lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    problem = problems.NLBVP([u, τ])
    problem.add_equation((Lap(u) + Lift(τ), F))
    problem.add_equation((u(r=radius), 0))
    # Solver
    solver = solvers.NonlinearBoundaryValueSolver(problem, ncc_cutoff=ncc_cutoff)
    # Initial guess
    u['g'] = 1
    # Iterations
    def error(perts):
        return np.sum([np.sum(np.abs(pert['c'])) for pert in perts])
    err = np.inf
    while err > tolerance:
        solver.newton_iteration()
        err = error(solver.perturbations)
    u_true = r**2 - radius**2
    u.change_scales(1)
    assert np.allclose(u['g'], u_true)
コード例 #9
0
ファイル: test_evp.py プロジェクト: jsoishi/dedalus
def test_ball_diffusion(Lmax, Nmax, Leig, radius, bc, dtype):
    # Bases
    c = coords.SphericalCoordinates('phi', 'theta', 'r')
    d = distributor.Distributor((c, ))
    b = basis.BallBasis(c, (2 * (Lmax + 1), Lmax + 1, Nmax + 1),
                        radius=radius,
                        dtype=dtype)
    b_S2 = b.S2_basis()
    phi, theta, r = b.local_grids((1, 1, 1))
    # Fields
    A = field.Field(dist=d, bases=(b, ), tensorsig=(c, ), dtype=dtype)
    φ = field.Field(dist=d, bases=(b, ), dtype=dtype)
    τ_A = field.Field(dist=d, bases=(b_S2, ), tensorsig=(c, ), dtype=dtype)
    λ = field.Field(name='λ', dist=d, dtype=dtype)
    # Parameters and operators
    div = lambda A: operators.Divergence(A)
    grad = lambda A: operators.Gradient(A, c)
    curl = lambda A: operators.Curl(A)
    lap = lambda A: operators.Laplacian(A, c)
    trans = lambda A: operators.TransposeComponents(A)
    radial = lambda A, index: operators.RadialComponent(A, index=index)
    angular = lambda A, index: operators.AngularComponent(A, index=index)
    Lift = lambda A: operators.Lift(A, b, -1)
    # Problem
    problem = problems.EVP([φ, A, τ_A], λ)
    problem.add_equation((div(A), 0))
    problem.add_equation((-λ * A + grad(φ) - lap(A) + Lift(τ_A), 0))
    if bc == 'no-slip':
        problem.add_equation((A(r=radius), 0))
    elif bc == 'stress-free':
        E = 1 / 2 * (grad(A) + trans(grad(A)))
        problem.add_equation((radial(A(r=radius), 0), 0))
        problem.add_equation((radial(angular(E(r=radius), 0), 1), 0))
    elif bc == 'potential':
        ell_func = lambda ell: ell + 1
        ell_1 = lambda A: operators.SphericalEllProduct(A, c, ell_func)
        problem.add_equation(
            (radial(grad(A)(r=radius), 0) + ell_1(A)(r=radius) / radius, 0))
    elif bc == 'conducting':
        problem.add_equation((φ(r=radius), 0))
        problem.add_equation((angular(A(r=radius), 0), 0))
    elif bc == 'pseudo':
        problem.add_equation((radial(A(r=radius), 0), 0))
        problem.add_equation((angular(curl(A)(r=radius), 0), 0))
    # Solver
    solver = solvers.EigenvalueSolver(problem)
    if not solver.subproblems[Leig].group[1] == Leig:
        raise ValueError("subproblems indexed in a strange way")
    solver.solve_dense(solver.subproblems[Leig])
    i_sort = np.argsort(solver.eigenvalues)
    solver.eigenvalues = solver.eigenvalues[i_sort]
    λ_analytic = analytic_eigenvalues(Leig, Nmax + 1, bc, r0=radius)
    if (bc == 'stress-free' and Leig == 1):
        # add null space solution
        λ_analytic = np.append(0, λ_analytic)
    assert np.allclose(solver.eigenvalues[:Nmax // 4], λ_analytic[:Nmax // 4])
コード例 #10
0
def test_lane_emden_floating_R(Nr, dtype, dealias):
    n = 3.0
    ncc_cutoff = 1e-10
    tolerance = 1e-10
    # Bases
    c = coords.SphericalCoordinates('phi', 'theta', 'r')
    d = distributor.Distributor((c,))
    b = basis.BallBasis(c, (1, 1, Nr), radius=1, dtype=dtype, dealias=dealias)
    bs = b.S2_basis(radius=1)
    bs0 = b.S2_basis(radius=0)
    phi, theta, r = b.local_grids((1, 1, 1))
    # Fields
    f = field.Field(dist=d, bases=(b,), dtype=dtype, name='f')
    R = field.Field(dist=d, dtype=dtype, name='R')
    τ = field.Field(dist=d, bases=(bs,), dtype=dtype, name='τ')
    one = field.Field(dist=d, bases=(bs0,), dtype=dtype)
    one['g'] = 1
    # Problem
    lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    problem = problems.NLBVP([f, R, τ])
    problem.add_equation((lap(f) + Lift(τ), - R**2 * f**n))
    problem.add_equation((f(r=0), one))
    problem.add_equation((f(r=1), 0))
    # Solver
    solver = solvers.NonlinearBoundaryValueSolver(problem, ncc_cutoff=ncc_cutoff)
    # Initial guess
    f['g'] = np.cos(np.pi/2 * r)**2
    R['g'] = 5
    # Iterations
    def error(perts):
        return np.sum([np.sum(np.abs(pert['c'])) for pert in perts])
    err = np.inf
    while err > tolerance:
        solver.newton_iteration()
        err = error(solver.perturbations)
    # Compare to reference solutions from Boyd
    R_ref = {0.0: np.sqrt(6),
            0.5: 2.752698054065,
            1.0: np.pi,
            1.5: 3.65375373621912608,
            2.0: 4.3528745959461246769735700,
            2.5: 5.355275459010779,
            3.0: 6.896848619376960375454528,
            3.25: 8.018937527,
            3.5: 9.535805344244850444,
            4.0: 14.971546348838095097611066,
            4.5: 31.836463244694285264}
    assert np.allclose(R['g'].ravel(), R_ref[n])
コード例 #11
0
ファイル: test_lbvp.py プロジェクト: jsoishi/dedalus
def test_heat_ncc_shell(Nmax, Lmax, ncc_exponent, ncc_location, ncc_scale,
                        dtype):
    # Bases
    dealias = 1
    c, d, b, phi, theta, r, x, y, z = build_shell(2 * (Lmax + 1),
                                                  Lmax + 1,
                                                  Nmax + 1,
                                                  dealias=dealias,
                                                  dtype=dtype)
    r0, r1 = b.radial_basis.radii
    # Fields
    u = field.Field(name='u', dist=d, bases=(b, ), dtype=dtype)
    τu1 = field.Field(name='τu1', dist=d, bases=(b.S2_basis(), ), dtype=dtype)
    τu2 = field.Field(name='τu2', dist=d, bases=(b.S2_basis(), ), dtype=dtype)
    ncc = field.Field(name='ncc',
                      dist=d,
                      bases=(b.radial_basis, ),
                      dtype=dtype)
    F = field.Field(name='a', dist=d, bases=(b, ), dtype=dtype)
    # Test Parameters
    F_value = {0: 6, 1: 2, 2: 1, 3 / 2: 3 / 4}
    analytic = {
        0: r**2 + 6 / r - 7,
        1: r + 2 / r - 3,
        2: np.log(r) + np.log(4) / r - np.log(4),
        3 / 2: np.sqrt(r) + 0.82842712 / r - 1.82842712
    }
    if ncc_location == 'RHS':
        ncc['g'] = 1
        F['g'] = F_value[ncc_exponent] * r**(-ncc_exponent)
    else:
        ncc['g'] = r**ncc_exponent
        F['g'] = F_value[ncc_exponent]
    u_true = analytic[ncc_exponent]
    ncc.change_scales(ncc_scale)
    ncc['g']  # force transform
    # Problem
    Lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A, n: operators.Lift(A, b, n)
    problem = problems.LBVP([u, τu1, τu2])
    problem.add_equation((ncc * Lap(u) + Lift(τu1, -1) + Lift(τu2, -2), F))
    problem.add_equation((u(r=r0), 0))
    problem.add_equation((u(r=r1), 0))
    # Solver
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    # Check solution
    assert np.allclose(u['g'], u_true)
コード例 #12
0
ファイル: test_evp.py プロジェクト: jsoishi/dedalus
def test_ball_bessel_eigenfunction(Lmax, Nmax, Leig, Neig, radius, dtype):
    # Bases
    c = coords.SphericalCoordinates('phi', 'theta', 'r')
    d = distributor.Distributor((c, ))
    b = basis.BallBasis(c, (2 * (Lmax + 1), Lmax + 1, Nmax + 1),
                        radius=radius,
                        dtype=dtype)
    b_S2 = b.S2_basis()
    phi, theta, r = b.local_grids((1, 1, 1))
    # Fields
    f = field.Field(dist=d, bases=(b, ), dtype=dtype)
    τ_f = field.Field(dist=d, bases=(b_S2, ), dtype=dtype)
    k2 = field.Field(name='k2', dist=d, dtype=dtype)
    # Parameters and operators
    lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    # Bessel equation: k^2*f + lap(f) = 0
    problem = problems.EVP([f, τ_f], k2)
    problem.add_equation((k2 * f + lap(f) + Lift(τ_f), 0))
    problem.add_equation((f(r=radius), 0))
    # Solver
    solver = solvers.EigenvalueSolver(problem)
    if not solver.subproblems[Leig].group[1] == Leig:
        raise ValueError("subproblems indexed in a strange way")
    solver.solve_dense(solver.subproblems[Leig])
    i_sort = np.argsort(solver.eigenvalues)
    solver.eigenvalues = solver.eigenvalues[i_sort]
    solver.eigenvectors = solver.eigenvectors[:, i_sort]
    solver.set_state(Neig,
                     solver.subproblems[Leig].subsystems[0])  # m = 0 mode
    f.change_layout(d.layouts[1])
    local_m, local_ell, local_n = f.layout.local_group_arrays(
        f.domain, f.scales)
    radial_eigenfunction = f.data[(local_m == 0) * (local_ell == Leig)]
    i_max = np.argmax(np.abs(radial_eigenfunction))
    radial_eigenfunction /= radial_eigenfunction[i_max]
    k = np.sqrt(solver.eigenvalues[Neig])
    sol = spec.jv(Leig + 1 / 2, k * r) / np.sqrt(k * r)
    sol = sol.ravel()
    sol /= sol[i_max]
    assert np.allclose(radial_eigenfunction, sol)
コード例 #13
0
ファイル: test_lbvp.py プロジェクト: jsoishi/dedalus
def test_scalar_heat_disk_axisymm(Nr, Nphi, dtype):
    # Bases
    dealias = 1
    c, d, b, phi, r, x, y = build_disk(Nphi, Nr, dealias=dealias, dtype=dtype)
    # Fields
    u = field.Field(name='u', dist=d, bases=(b, ), dtype=dtype)
    τu = field.Field(name='u', dist=d, bases=(b.S1_basis(), ), dtype=dtype)
    F = field.Field(name='a', dist=d, bases=(b, ), dtype=dtype)
    F['g'] = 4
    # Problem
    Lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    problem = problems.LBVP([u, τu])
    problem.add_equation((Lap(u) + Lift(τu), F))
    problem.add_equation((u(r=radius_disk), 0))
    # Solver
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    # Check solution
    u_true = r**2 - 1
    assert np.allclose(u['g'], u_true)
コード例 #14
0
ファイル: test_lbvp.py プロジェクト: jsoishi/dedalus
def test_heat_ncc_cos_ball(Nmax, Lmax, ncc_scale, dtype):
    # Bases
    dealias = 1
    c, d, b, phi, theta, r, x, y, z = build_ball(2 * (Lmax + 1),
                                                 Lmax + 1,
                                                 Nmax + 1,
                                                 dealias=dealias,
                                                 dtype=dtype)
    # Fields
    u = field.Field(name='u', dist=d, bases=(b, ), dtype=dtype)
    τu = field.Field(name='u', dist=d, bases=(b.S2_basis(), ), dtype=dtype)
    ncc = field.Field(name='ncc',
                      dist=d,
                      bases=(b.radial_basis, ),
                      dtype=dtype)
    F = field.Field(name='a', dist=d, bases=(b, ), dtype=dtype)
    # Test Parameters
    R = radius_ball
    u_true = np.cos(np.pi / 2 * (r / R)**2)
    g = -np.pi / 2 / R**2 * (4 * np.pi / 2 * (r / R)**2 * np.cos(np.pi / 2 *
                                                                 (r / R)**2) +
                             6 * np.sin(np.pi / 2 * (r / R)**2))
    ncc['g'] = u_true
    F['g'] = u_true * g
    ncc.change_scales(ncc_scale)
    ncc['g']  # force transform
    # Problem
    Lap = lambda A: operators.Laplacian(A, c)
    Lift = lambda A: operators.Lift(A, b, -1)
    problem = problems.LBVP([u, τu])
    problem.add_equation((ncc * Lap(u) + Lift(τu), F))
    problem.add_equation((u(r=radius_ball), 0))
    # Solver
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    # Check solution
    assert np.allclose(u['g'], u_true)
コード例 #15
0
def test_lane_emden_first_order(Nr, dtype, dealias):
    n = 3.0
    ncc_cutoff = 1e-10
    tolerance = 1e-10
    # Bases
    c = coords.SphericalCoordinates('phi', 'theta', 'r')
    d = distributor.Distributor((c,))
    b = basis.BallBasis(c, (1, 1, Nr), radius=1, dtype=dtype, dealias=dealias)
    br = b.radial_basis
    phi, theta, r = b.local_grids((1, 1, 1))
    # Fields
    p = field.Field(dist=d, bases=(br,), dtype=dtype, name='p')
    ρ = field.Field(dist=d, bases=(br,), dtype=dtype, name='ρ')
    φ = field.Field(dist=d, bases=(br,), dtype=dtype, name='φ')
    τ = field.Field(dist=d, dtype=dtype, name='τ')
    τ2 = field.Field(dist=d, dtype=dtype, name='τ2')
    rf = field.Field(dist=d, bases=(br,), tensorsig=(c,), dtype=dtype, name='r')
    rf['g'][2] = r
    # Problem
    lap = lambda A: operators.Laplacian(A, c)
    grad = lambda A: operators.Gradient(A, c)
    div = lambda A: operators.Divergence(A)
    Lift = lambda A: operators.Lift(A, br, -1)
    dot = lambda A, B: arithmetic.DotProduct(A, B)
    rdr = lambda A: dot(rf, grad(A))
    problem = problems.NLBVP([p, ρ, φ, τ, τ2])
    problem.add_equation((p, ρ**(1+1/n)))
    problem.add_equation((lap(φ) + Lift(τ), ρ))
    problem.add_equation((φ(r=1), 0))

    # This works
    # problem.add_equation((-φ, (n+1) * ρ**(1/n)))
    # problem.add_equation((τ2, 0))

    # Also works when near correct solution
    # problem.add_equation((-φ**n, (n+1)**n * ρ))
    # problem.add_equation((τ2, 0))

    # Doesn't work well
    problem.add_equation((rdr(p) + Lift(τ2), -ρ*rdr(φ)))
    problem.add_equation((p(r=1), 0))

    # Also doesn't work well
    # problem.add_equation((lap(p) + Lift(τ2), -div(ρ*grad(φ))))
    # problem.add_equation((p(r=1), 0))

    # Solver
    solver = solvers.NonlinearBoundaryValueSolver(problem, ncc_cutoff=ncc_cutoff)
    # Initial guess
    #φ['g'] = - 55 *  np.cos(np.pi/2 * r)
    #φ['g'] = - 50 *  (1 - r) * (1 + r)
    φ['g'] = np.array([[[-5.49184941e+01-2.10742982e-38j,
         -5.41628923e+01-5.32970546e-38j,
         -5.29461420e+01-5.04522267e-38j,
         -5.13265949e+01-2.97780743e-38j,
         -4.93761552e+01-2.61880274e-38j,
         -4.71730013e+01-3.43967627e-38j,
         -4.47948939e+01-3.04186813e-38j,
         -4.23139098e+01-1.79113018e-38j,
         -3.97929639e+01-1.43996160e-38j,
         -3.72840673e+01-1.63817277e-38j,
         -3.48280092e+01-9.99537738e-39j,
         -3.24550394e+01-3.17721047e-40j,
         -3.01861437e+01-5.81373831e-42j,
         -2.80345785e+01-3.10228717e-39j,
         -2.60074301e+01+1.28594534e-39j,
         -2.41070531e+01+7.60758754e-39j,
         -2.23323155e+01+7.97312927e-39j,
         -2.06796271e+01+5.81693170e-39j,
         -1.91437566e+01+6.56252079e-39j,
         -1.77184618e+01+1.10908840e-38j,
         -1.63969611e+01+1.53872437e-38j,
         -1.51722763e+01+1.39129399e-38j,
         -1.40374741e+01+9.43669477e-39j,
         -1.29858304e+01+9.30920868e-39j,
         -1.20109359e+01+1.23602737e-38j,
         -1.11067589e+01+1.41710050e-38j,
         -1.02676773e+01+1.60717088e-38j,
         -9.48848876e+00+1.77178302e-38j,
         -8.76440610e+00+1.48647842e-38j,
         -8.09104289e+00+1.01146628e-38j,
         -7.46439287e+00+1.11622279e-38j,
         -6.88080593e+00+1.66263627e-38j,
         -6.33696251e+00+1.79488585e-38j,
         -5.82984767e+00+1.46579657e-38j,
         -5.35672567e+00+1.34603496e-38j,
         -4.91511565e+00+1.50574167e-38j,
         -4.50276874e+00+1.54259944e-38j,
         -4.11764669e+00+1.52307339e-38j,
         -3.75790229e+00+1.61072571e-38j,
         -3.42186130e+00+1.52968997e-38j,
         -3.10800611e+00+1.33188351e-38j,
         -2.81496085e+00+1.46531686e-38j,
         -2.54147800e+00+1.65381249e-38j,
         -2.28642630e+00+1.48467159e-38j,
         -2.04877987e+00+1.49987605e-38j,
         -1.82760852e+00+1.83704612e-38j,
         -1.62206896e+00+1.68020109e-38j,
         -1.43139709e+00+1.17510410e-38j,
         -1.25490103e+00+1.25754442e-38j,
         -1.09195489e+00+1.71504952e-38j,
         -9.41993349e-01+1.76972495e-38j,
         -8.04506695e-01+1.53368883e-38j,
         -6.79036552e-01+1.46402303e-38j,
         -5.65172039e-01+1.54974386e-38j,
         -4.62546411e-01+1.60642465e-38j,
         -3.70834105e-01+1.59758147e-38j,
         -2.89748169e-01+1.49361039e-38j,
         -2.19038018e-01+1.32679253e-38j,
         -1.58487515e-01+1.40338570e-38j,
         -1.07913330e-01+1.83256446e-38j,
         -6.71635483e-02+2.05950514e-38j,
         -3.61164846e-02+1.65676365e-38j,
         -1.46794435e-02+1.02374473e-38j,
         -2.78432418e-03+6.69851727e-39j]]])
    ρ['g'] = (-φ['g']/(n+1))**n
    p['g'] = ρ['g']**(1+1/n)
    # Iterations
    def error(perts):
        return np.sum([np.sum(np.abs(pert['c'])) for pert in perts])
    err = np.inf
    while err > tolerance and solver.iteration < 20:
        solver.newton_iteration()
        err = error(solver.perturbations)
        φcen = φ(r=0).evaluate()['g'][0,0,0]
        R = -φcen  / (n+1)**(3/2)
        print(solver.iteration, φcen, R, err)
        dH = solver.subproblems[0].dH_min
        print('%.2e' %np.linalg.cond(dH.A))
    if err > tolerance:
        raise ValueError("Did not converge")
    # Compare to reference solutions from Boyd
    R_ref = {0.0: np.sqrt(6),
            0.5: 2.752698054065,
            1.0: np.pi,
            1.5: 3.65375373621912608,
            2.0: 4.3528745959461246769735700,
            2.5: 5.355275459010779,
            3.0: 6.896848619376960375454528,
            3.25: 8.018937527,
            3.5: 9.535805344244850444,
            4.0: 14.971546348838095097611066,
            4.5: 31.836463244694285264}
    assert np.allclose(R, R_ref[n])