コード例 #1
0
ファイル: simulation.py プロジェクト: kburns/sphered_cube
        dt = params.dt_max
    if dt < dt_old*(1+params.threshold) and dt > dt_old*(1-params.threshold):
        dt = dt_old
    return dt

# Timestepping loop
start_time = time.time()
t = 0.
iter = 0
dt = params.dt_max
snapshots_time = -1e-20

while t < params.t_end:
    equations.nonlinear(state_vector, NL, t, M, params.R, params.Prandtl, params.Rayleigh, params.epsilon, psi)
    if iter % 10 == 0:
        Tmax = np.max(T['g'])
        Tmax = reducer.reduce_scalar(Tmax, MPI.MAX)
        logger.info("iter: {:d}, dt={:e}, t={:e}, T_max={:e}".format(iter, dt, t, Tmax))
    if t > snapshots_time:
        snapshots_time += params.snapshots_cadence
        snapshots.process(time.time(), t, dt, iter)
    if iter % 10 == 0:
        dt = calculate_dt(dt)
    timestepper.step(dt, state_vector, B, L, M, P, NL, LU)
    t += dt
    iter += 1

end_time = time.time()
logger.info('Simulation runtime: %f' %(end_time-start_time))

コード例 #2
0
reducer = GlobalArrayReducer(domain.dist.comm_cart)

while t < t_end:

    nonlinear(state_vector,NL,t)

    if iter % 5 == 0:
        state_vector.unpack(u,p,T,A,pi)

        # H = curl(A)
        for ell in range(ell_start,ell_end+1):
            ell_local = ell - ell_start
            B.curl(ell,1,A['c'][ell_local],H['c'][ell_local])

        Ek = np.sum(weight_r*weight_theta* 0.5*u['g']**2)*(np.pi)/((L_max+1)*L_dealias)
        Em = np.sum(weight_r*weight_theta* 0.5/Rossby*H['g']**2)*np.pi/((L_max+1)*L_dealias)

        Ek = reducer.reduce_scalar(Ek, MPI.SUM)
        Em = reducer.reduce_scalar(Em, MPI.SUM)
        if rank == 0:
            print( t,iter,Ek,Em )

    timestepper.step(dt, state_vector, B, L, M, P, NL, LU)
    t += dt
    iter += 1

end_time = time.time()
if rank==0:
    print('simulation took: %f' %(end_time-start_time))

コード例 #3
0
problem.add_equation(eq_eval("tau = 0"), condition="ntheta == 0")
logger.info("Problem built")

# Solver
solver = solvers.InitialValueSolver(problem, ts)
solver.stop_sim_time = t_end

# Analysis
t_list = []
E_list = []
weight_theta = b.local_colatitude_weights(1)
weight_r = b.local_radial_weights(1)
reducer = GlobalArrayReducer(d.comm_cart)
vol_test = np.sum(weight_r * weight_theta +
                  0 * p['g']) * np.pi / (Lmax + 1) / L_dealias
vol_test = reducer.reduce_scalar(vol_test, MPI.SUM)
vol_correction = 4 * np.pi / 3 / vol_test

# Main loop
start_time = time.time()
while solver.ok:
    if solver.iteration % 10 == 0:
        E0 = np.sum(vol_correction * weight_r * weight_theta * u['g'].real**2)
        E0 = 0.5 * E0 * (np.pi) / (Lmax + 1) / L_dealias
        E0 = reducer.reduce_scalar(E0, MPI.SUM)
        logger.info("t = %f, E = %e" % (solver.sim_time, E0))
        t_list.append(solver.sim_time)
        E_list.append(E0)
    solver.step(dt)
end_time = time.time()
logger.info('Run time:', end_time - start_time)
コード例 #4
0
# Solver
solver = solvers.InitialValueSolver(problem, ts)
solver.stop_sim_time = t_end

logger.info("built IVP")

# Analysis
t_list = []
KE_list = []
ME_list = []
weight_theta = b.local_colatitude_weights(1)
weight_r = b.local_radial_weights(1)
reducer = GlobalArrayReducer(d.comm_cart)
vol_test = np.sum(weight_r * weight_theta +
                  0 * p['g']) * np.pi / (Lmax + 1) / L_dealias
vol_test = reducer.reduce_scalar(vol_test, MPI.SUM)
vol_correction = 4 * np.pi / 3 / vol_test

# Main loop
report_cadence = 10
good_solution = True
start_time = time.time()
while solver.ok and good_solution:
    if solver.iteration % report_cadence == 0:
        KE = np.sum(vol_correction * weight_r * weight_theta * u['g'].real**2)
        KE = 0.5 * KE * (np.pi) / (Lmax + 1) / L_dealias
        KE = reducer.reduce_scalar(KE, MPI.SUM)
        B = (operators.Curl(A)).evaluate()
        ME = np.sum(vol_correction * weight_r * weight_theta * B['g'].real**2)
        ME = 0.5 * ME * (np.pi) / (Lmax + 1) / L_dealias
        ME /= Rossby
コード例 #5
0
t_list = []
E_list = []

# timestepping loop
start_time = time.time()
iter = 0

while t < t_end:

    nonlinear(state_vector, NL, t)

    if iter % 10 == 0:
        E0 = np.sum(weight_r * weight_theta * 0.5 * u['g']**2) * (np.pi) / (
            (L_max + 1) * L_dealias)
        E0 = reducer.reduce_scalar(E0, MPI.SUM)
        logger.info("iter: {:d}, dt={:e}, t/t_e={:e}, E0={:e}".format(
            iter, dt, t / t_end, E0))
        if rank == 0:
            t_list.append(t)
            E_list.append(E0)

    timestepper.step(dt, state_vector, B, L, M, P, NL, LU)
    t += dt
    iter += 1

end_time = time.time()
if rank == 0:
    print('simulation took: %f' % (end_time - start_time))
    t_list = np.array(t_list)
    E_list = np.array(E_list)
コード例 #6
0
    tau_columns = np.zeros((shape[0], 4))
    tau_columns[:N0, 0] = (C(Nmax))[:, -1]
    tau_columns[:N0, 1] = (C(Nmax))[:, -2]
    tau_columns[N0:N1, 2] = (C(Nmax))[:, -1]
    tau_columns[N0:N1, 3] = (C(Nmax))[:, -2]
    L[:, -4:] = tau_columns
    subproblem.L_min = subproblem.left_perm @ L
    subproblem.L_min.eliminate_zeros()
    subproblem.expand_matrices(['M', 'L'])

weight_theta = b.local_colatitude_weights(1)
weight_r = b.local_radial_weights(1)
reducer = GlobalArrayReducer(d.comm_cart)
vol_test = np.sum(weight_r * weight_theta +
                  0 * T['g']) * np.pi / (Lmax + 1) / L_dealias
vol_test = reducer.reduce_scalar(vol_test, MPI.SUM)
vol_correction = 4 * np.pi / 3 / vol_test

report_cadence = 10

dt = 1e-3

plot_cadence = report_cadence
plot = theta_target in theta

var = T['g']
name = 'T_diff'
if plot:
    i_theta = np.argmin(np.abs(theta[0, :, 0] - theta_target))
    import matplotlib.pyplot as plt
    from dedalus.extras import plot_tools
コード例 #7
0
# Solver
solver = solvers.InitialValueSolver(problem, ts)
solver.stop_sim_time = t_end + dt

# Analysis
t_list = []
E_list = []
T_list = []
T_err_list = []
weight_theta = b.local_colatitude_weights(1)
weight_r = b.local_radial_weights(1)
reducer = GlobalArrayReducer(d.comm_cart)
vol_test = np.sum(weight_r * weight_theta +
                  0 * T['g']) * np.pi / (Lmax + 1) / L_dealias
vol_test = reducer.reduce_scalar(vol_test, MPI.SUM)
vol_correction = 4 * np.pi / 3 / vol_test

report_cadence = 10

# Main loop
start_time = time.time()
while solver.ok:
    if args['--verbose'] and solver.iteration % report_cadence == 0 and solver.iteration > 0:
        E0 = np.sum(vol_correction * weight_r * weight_theta * u['g'].real**2)
        E0 = 0.5 * E0 * (np.pi) / (Lmax + 1) / L_dealias
        E0 = reducer.reduce_scalar(E0, MPI.SUM)
        T0 = np.sum(vol_correction * weight_r * weight_theta * T['g'].real**2)
        T0 = T0 * (np.pi) / (Lmax + 1) / L_dealias
        T0 = reducer.reduce_scalar(T0, MPI.SUM)
        T_err = np.sum(vol_correction * weight_r * weight_theta *
コード例 #8
0
#    plt.imshow(np.log10(np.abs(L.A)))
#    plt.colorbar()
#    plt.savefig("matrices/ell_%03i.png" %ell, dpi=300)
#    plt.clf()
#    print(subproblem.group, np.linalg.cond((M + L).A))

# Analysis
t_list = []
E_list = []

weightB_theta = bB.local_colatitude_weights(1)
weightB_r = bB.local_radial_weights(1)
reducer = GlobalArrayReducer(d.comm_cart)
vol_test = np.sum(weightB_r * weightB_theta +
                  0 * pB['g']) * np.pi / (Lmax + 1) / L_dealias
vol_test = reducer.reduce_scalar(vol_test, MPI.SUM)
vol_correctionB = 4 * np.pi / 3 * 0.5**3 / vol_test

weightS_theta = bS.local_colatitude_weights(1)
weightS_r = bS.local_radial_weights(1) * r_S**2
reducer = GlobalArrayReducer(d.comm_cart)

vol_test = np.sum(weightS_r * weightS_theta +
                  0 * pS['g']) * np.pi / (Lmax + 1) / L_dealias
vol_test = reducer.reduce_scalar(vol_test, MPI.SUM)
vol_correctionS = 4 * np.pi / 3 * (1**3 - 0.5**3) / vol_test

# Main loop
start_time = time.time()
while solver.ok:
    if solver.iteration % 10 == 0: