コード例 #1
0
def lane_emden(Nr, m=1.5, n_rho=3, radius=1,
               ncc_cutoff = 1e-10, tolerance = 1e-10, dtype=np.complex128, comm=None):
    # TO-DO: clean this up and make work for ncc ingestion in main script in np.float64 rather than np.complex128
    c = de.SphericalCoordinates('phi', 'theta', 'r')
    d = de.Distributor((c,), comm=comm, dtype=dtype)
    b = de.BallBasis(c, (1, 1, Nr), radius=radius, dtype=dtype)
    br = b.radial_basis
    phi, theta, r = b.local_grids()
    # Fields
    f = d.Field(name='f', bases=b)
    R = d.Field(name='R')
    τ = d.Field(name='τ', bases=b.S2_basis(radius=radius))
    # Parameters and operators
    lap = lambda A: de.Laplacian(A, c)
    lift_basis = b.clone_with(k=2) # match laplacian
    lift = lambda A: de.LiftTau(A, lift_basis, -1)
    problem = de.NLBVP([f, R, τ])
    problem.add_equation((lap(f) + lift(τ), - R**2 * f**m))
    problem.add_equation((f(r=0), 1))
    problem.add_equation((f(r=radius), np.exp(-n_rho/m, dtype=dtype))) # explicit typing to match domain

    # Solver
    solver = problem.build_solver(ncc_cutoff=ncc_cutoff)
    # Initial guess
    f['g'] = np.cos(np.pi/2 * r)**2
    R['g'] = 5

    # Iterations
    logger.debug('beginning Lane-Emden NLBVP iterations')
    pert_norm = np.inf
    while pert_norm > tolerance:
        solver.newton_iteration()
        pert_norm = sum(pert.allreduce_data_norm('c', 2) for pert in solver.perturbations)
        logger.debug(f'Perturbation norm: {pert_norm:.3e}')
    T = d.Field(name='T', bases=br)
    ρ = d.Field(name='ρ', bases=br)
    lnρ = d.Field(name='lnρ', bases=br)
    T['g'] = f['g']
    ρ['g'] = f['g']**m
    lnρ['g'] = np.log(ρ['g'])

    structure = {'T':T,'lnρ':lnρ}
    for key in structure:
        structure[key].require_scales(1)
    structure['r'] = r
    structure['problem'] = {'c':c, 'b':b, 'problem':problem}
    return structure
コード例 #2
0
zb = de.ChebyshevT(c.coords[1], size=nz, bounds=(0, Lz), dealias=dealias)
b = (xb, zb)
x = xb.local_grid(1)
z = zb.local_grid(1)

# Fields
T = d.Field(name='T', bases=b)
Υ = d.Field(name='Υ', bases=b)
s = d.Field(name='s', bases=b)
u = d.VectorField(c, name='u', bases=b)

# Taus
zb1 = zb.clone_with(a=zb.a + 1, b=zb.b + 1)
zb2 = zb.clone_with(a=zb.a + 2, b=zb.b + 2)
lift_basis = zb.clone_with(a=1 / 2, b=1 / 2)  # First derivative basis
lift = lambda A, n: de.LiftTau(A, lift_basis, n)
τs1 = d.Field(name='τs1', bases=xb)
τs2 = d.Field(name='τs2', bases=xb)
τu1 = d.VectorField(c, name='τu1', bases=(xb, ))
τu2 = d.VectorField(c, name='τu2', bases=(xb, ))

# Parameters and operators
div = lambda A: de.Divergence(A, index=0)
lap = lambda A: de.Laplacian(A, c)
grad = lambda A: de.Gradient(A, c)
#curl = lambda A: de.operators.Curl(A)
dot = lambda A, B: de.DotProduct(A, B)
cross = lambda A, B: de.CrossProduct(A, B)
trace = lambda A: de.Trace(A)
trans = lambda A: de.TransposeComponents(A)
dt = lambda A: de.TimeDerivative(A)
コード例 #3
0
ファイル: FC_poly.py プロジェクト: bpbrown/fully_compressible
xb = de.RealFourier(c.coords[0], size=nx, bounds=(0, Lx), dealias=dealias)
zb = de.ChebyshevT(c.coords[1], size=nz, bounds=(0, Lz), dealias=dealias)
b = (xb, zb)
x = xb.local_grid(1)
z = zb.local_grid(1)

# Fields
θ = d.Field(name='θ', bases=b)
Υ = d.Field(name='Υ', bases=b)
s = d.Field(name='s', bases=b)
u = d.VectorField(c, name='u', bases=b)

# Taus
zb1 = zb.clone_with(a=zb.a + 1, b=zb.b + 1)
zb2 = zb.clone_with(a=zb.a + 2, b=zb.b + 2)
lift1 = lambda A, n: de.LiftTau(A, zb1, n)
lift = lambda A, n: de.LiftTau(A, zb2, n)
τs1 = d.Field(name='τs1', bases=xb)
τs2 = d.Field(name='τs2', bases=xb)
τu1 = d.VectorField(c, name='τu1', bases=(xb, ))
τu2 = d.VectorField(c, name='τu2', bases=(xb, ))

# Parameters and operators
div = lambda A: de.Divergence(A, index=0)
lap = lambda A: de.Laplacian(A, c)
grad = lambda A: de.Gradient(A, c)
#curl = lambda A: de.operators.Curl(A)
dot = lambda A, B: de.DotProduct(A, B)
cross = lambda A, B: de.CrossProduct(A, B)
trace = lambda A: de.Trace(A)
trans = lambda A: de.TransposeComponents(A)