class DeepDisfluencyTagger(IncrementalTagger): """A deep-learning driven incremental disfluency tagger (and optionally utterance-segmenter). Tags each word with the following: <f/> - a fluent word <e/> - an edit term word, not necessarily inside a repair structure <rms id="N"/> - reparandum start word for repair with ID number N <rm id="N"/> - mid-reparandum word for repair N <i id="N"/> - interregnum word for repair N <rps id="N"/> - repair onset word for repair N <rp id="N"/> - mid-repair word for repair N <rpn id="N"/> - repair end word for substitution or repetition repair N <rpnDel id="N"/> - repair end word for a delete repair N If in joint utterance segmentation mode according to the config file, the following utterance segmentation tags are used: <cc/> - a word which continues the current utterance and whose following word will continue it <ct/> - a word which continues the current utterance and is the last word of it <tc/> - a word which is the beginning of an utterance and whose following word will continue it <tt/> - a word constituting an entire utterance """ def __init__(self, config_file=None, config_number=None, saved_model_dir=None, pos_tagger=None, language_model=None, pos_language_model=None, edit_language_model=None, timer=None, timer_scaler=None, use_timing_data=False): if not config_file: config_file = os.path.dirname(os.path.realpath(__file__)) +\ "/../experiments/experiment_configs.csv" config_number = 35 print "No config file, using default", config_file, config_number super(DeepDisfluencyTagger, self).__init__(config_file, config_number, saved_model_dir) print "Processing args from config number {} ...".format(config_number) self.args = process_arguments(config_file, config_number, use_saved=False, hmm=True) # separate manual setting setattr(self.args, "use_timing_data", use_timing_data) print "Intializing model from args..." self.model = self.init_model_from_config(self.args) # load a model from a folder if specified if saved_model_dir: print "Loading saved weights from", saved_model_dir self.load_model_params_from_folder(saved_model_dir, self.args.model_type) else: print "WARNING no saved model params, needs training." print "Loading original embeddings" self.load_embeddings(self.args.embeddings) if pos_tagger: print "Loading POS tagger..." self.pos_tagger = pos_tagger elif self.args.pos: print "No POS tagger specified,loading default CRF switchboard one" self.pos_tagger = CRFTagger() tagger_path = os.path.dirname(os.path.realpath(__file__)) +\ "/../feature_extraction/crfpostagger" self.pos_tagger.set_model_file(tagger_path) if self.args.n_language_model_features > 0 or \ 'noisy_channel' in self.args.decoder_type: print "training language model..." self.init_language_models(language_model, pos_language_model, edit_language_model) if timer: print "loading timer..." self.timing_model = timer self.timing_model_scaler = timer_scaler else: # self.timing_model = None # self.timing_model_scaler = None print "No timer specified, using default switchboard one" timer_path = os.path.dirname(os.path.realpath(__file__)) +\ '/../decoder/timing_models/' + \ 'LogReg_balanced_timing_classifier.pkl' with open(timer_path, 'rb') as fid: self.timing_model = cPickle.load(fid) timer_scaler_path = os.path.dirname(os.path.realpath(__file__)) +\ '/../decoder/timing_models/' + \ 'LogReg_balanced_timing_scaler.pkl' with open(timer_scaler_path, 'rb') as fid: self.timing_model_scaler = cPickle.load(fid) # TODO a hack # self.timing_model_scaler.scale_ = \ # self.timing_model_scaler.std_.copy() print "Loading decoder..." hmm_dict = deepcopy(self.tag_to_index_map) # add the interegnum tag if "disf" in self.args.tags: intereg_ind = len(hmm_dict.keys()) interreg_tag = \ "<i/><cc/>" if "uttseg" in self.args.tags else "<i/>" hmm_dict[interreg_tag] = intereg_ind # add the interregnum tag # decoder_file = os.path.dirname(os.path.realpath(__file__)) + \ # "/../decoder/model/{}_tags".format(self.args.tags) noisy_channel = None if 'noisy_channel' in self.args.decoder_type: noisy_channel = SourceModel(self.lm, self.pos_lm, uttseg=self.args.do_utt_segmentation) self.decoder = FirstOrderHMM( hmm_dict, markov_model_file=self.args.tags, timing_model=self.timing_model, timing_model_scaler=self.timing_model_scaler, constraint_only=True, noisy_channel=noisy_channel) # getting the states in the right shape self.state_history = [] self.softmax_history = [] # self.convert_to_output_tags = get_conversion_method(self.args.tags) self.reset() def init_language_models(self, language_model=None, pos_language_model=None, edit_language_model=None): clean_model_dir = os.path.dirname(os.path.realpath(__file__)) +\ "/../data/lm_corpora" if language_model: self.lm = language_model else: print "No language model specified, using default switchboard one" lm_corpus_file = open(clean_model_dir + "/swbd_disf_train_1_clean.text") lines = [ line.strip("\n").split(",")[1] for line in lm_corpus_file if "POS," not in line and not line.strip("\n") == "" ] split = int(0.9 * len(lines)) lm_corpus = "\n".join(lines[:split]) heldout_lm_corpus = "\n".join(lines[split:]) lm_corpus_file.close() self.lm = KneserNeySmoothingModel( order=3, discount=0.7, partial_words=self.args.partial_words, train_corpus=lm_corpus, heldout_corpus=heldout_lm_corpus, second_corpus=None) if pos_language_model: self.pos_lm = pos_language_model elif self.args.pos: print "No pos language model specified, \ using default switchboard one" lm_corpus_file = open(clean_model_dir + "/swbd_disf_train_1_clean.text") lines = [ line.strip("\n").split(",")[1] for line in lm_corpus_file if "POS," in line and not line.strip("\n") == "" ] split = int(0.9 * len(lines)) lm_corpus = "\n".join(lines[:split]) heldout_lm_corpus = "\n".join(lines[split:]) lm_corpus_file.close() self.pos_lm = KneserNeySmoothingModel( order=3, discount=0.7, partial_words=self.args.partial_words, train_corpus=lm_corpus, heldout_corpus=heldout_lm_corpus, second_corpus=None) if edit_language_model: self.edit_lm = edit_language_model else: edit_lm_corpus_file = open(clean_model_dir + "/swbd_disf_train_1_edit.text") edit_lines = [ line.strip("\n").split(",")[1] for line in edit_lm_corpus_file if "POS," not in line and not line.strip("\n") == "" ] edit_split = int(0.9 * len(edit_lines)) edit_lm_corpus = "\n".join(edit_lines[:edit_split]) heldout_edit_lm_corpus = "\n".join(edit_lines[edit_split:]) edit_lm_corpus_file.close() self.edit_lm = KneserNeySmoothingModel( train_corpus=edit_lm_corpus, heldout_corpus=heldout_edit_lm_corpus, order=2, discount=0.7) # TODO an object for getting the lm features incrementally # in the language model def init_model_from_config(self, args): # for feat, val in args._get_kwargs(): # print feat, val, type(val) if not test_if_using_GPU(): print "Warning: not using GPU, might be a bit slow" print "\tAdjust Theano config file ($HOME/.theanorc)" print "loading tag to index maps..." label_path = os.path.dirname(os.path.realpath(__file__)) +\ "/../data/tag_representations/{}_tags.csv".format(args.tags) word_path = os.path.dirname(os.path.realpath(__file__)) +\ "/../data/tag_representations/{}.csv".format(args.word_rep) pos_path = os.path.dirname(os.path.realpath(__file__)) +\ "/../data/tag_representations/{}.csv".format(args.pos_rep) self.tag_to_index_map = load_tags(label_path) self.word_to_index_map = load_tags(word_path) self.pos_to_index_map = load_tags(pos_path) self.model_type = args.model_type vocab_size = len(self.word_to_index_map.keys()) emb_dimension = args.emb_dimension n_hidden = args.n_hidden n_extra = args.n_language_model_features + args.n_acoustic_features n_classes = len(self.tag_to_index_map.keys()) self.window_size = args.window n_pos = len(self.pos_to_index_map.keys()) update_embeddings = args.update_embeddings lr = args.lr print "Initializing model of type", self.model_type, "..." if self.model_type == 'elman': model = Elman(ne=vocab_size, de=emb_dimension, nh=n_hidden, na=n_extra, n_out=n_classes, cs=self.window_size, npos=n_pos, update_embeddings=update_embeddings) self.initial_h0_state = model.h0.get_value() self.initial_c0_state = None elif self.model_type == 'lstm': model = LSTM(ne=vocab_size, de=emb_dimension, n_lstm=n_hidden, na=n_extra, n_out=n_classes, cs=self.window_size, npos=n_pos, lr=lr, single_output=True, cost_function='nll') self.initial_h0_state = model.h0.get_value() self.initial_c0_state = model.c0.get_value() else: raise NotImplementedError('No model init for {0}'.format( self.model_type)) return model def load_model_params_from_folder(self, model_folder, model_type): if model_type in ["lstm", "elman"]: self.model.load_weights_from_folder(model_folder) self.initial_h0_state = self.model.h0.get_value() if model_type == "lstm": self.initial_c0_state = self.model.c0.get_value() else: raise NotImplementedError( 'No weight loading for {0}'.format(model_type)) def load_embeddings(self, embeddings_name): # load pre-trained embeddings embeddings_dir = os.path.dirname(os.path.realpath(__file__)) +\ "/../embeddings/" pretrained = gensim.models.Word2Vec.load(embeddings_dir + embeddings_name) print "emb shape", pretrained[pretrained.index2word[0]].shape # print pretrained[0].shape # assign and fill in the gaps emb = populate_embeddings(self.args.emb_dimension, len(self.word_to_index_map.items()), self.word_to_index_map, pretrained) self.model.load_weights(emb=emb) def standardize_word_and_pos( self, word, pos=None, proper_name_pos_tags=["NNP", "NNPS", "CD", "LS", "SYM", "FW"]): word = word.lower() if not pos and self.pos_tagger: pos = self.pos_tagger.tag([]) # TODO if pos: pos = pos.upper() if pos in proper_name_pos_tags and "$unc$" not in word: word = "$unc$" + word if self.pos_to_index_map.get(pos) is None: # print "unknown pos", pos pos = "<unk>" if self.word_to_index_map.get(word) is None: # print "unknown word", word word = "<unk>" return word, pos def tag_new_word(self, word, pos=None, timing=None, extra=None, diff_only=True, rollback=0): """Tag new incoming word and update the word and tag graphs. :param word: the word to consume/tag :param pos: the POS tag to consume/tag (optional) :param timing: the duration of the word (optional) :param diff_only: whether to output only the diffed suffix, if False, outputs entire output tags :param rollback: the number of words to rollback in the case of changed word hypotheses from an ASR """ self.rollback(rollback) if pos is None and self.args.pos: # if no pos tag provided but there is a pos-tagger, tag word test_words = [ unicode(x) for x in get_last_n_features( "words", self.word_graph, len(self.word_graph) - 1, n=4) ] + [unicode(word.lower())] pos = self.pos_tagger.tag(test_words)[-1][1] # print "tagging", word, "as", pos # 0. Add new word to word graph word, pos = self.standardize_word_and_pos(word, pos) # print "New word:", word, pos self.word_graph.append((word, pos, timing)) # 1. load the saved internal rnn state # TODO these nets aren't (necessarily) trained statefully # The internal state in training self.args.bs words back # are the inital ones in training, however here # They are the actual state reached. if self.state_history == []: c0_state = self.initial_c0_state h0_state = self.initial_h0_state else: if self.model_type == "lstm": c0_state = self.state_history[-1][0][-1] h0_state = self.state_history[-1][1][-1] elif self.model_type == "elman": h0_state = self.state_history[-1][-1] if self.model_type == "lstm": self.model.load_weights(c0=c0_state, h0=h0_state) elif self.model_type == "elman": self.model.load_weights(h0=h0_state) else: raise NotImplementedError("no history loading for\ {0} model".format(self.model_type)) # 2. do the softmax output with converted inputs word_window = [ self.word_to_index_map[x] for x in get_last_n_features("words", self.word_graph, len(self.word_graph) - 1, n=self.window_size) ] pos_window = [ self.pos_to_index_map[x] for x in get_last_n_features("POS", self.word_graph, len(self.word_graph) - 1, n=self.window_size) ] # print "word_window, pos_window", word_window, pos_window if self.model_type == "lstm": h_t, c_t, s_t = self.model.\ soft_max_return_hidden_layer([word_window], [pos_window]) self.softmax_history.append(s_t) if len(self.state_history) == 20: # just saving history self.state_history.pop(0) # pop first one self.state_history.append((c_t, h_t)) elif self.model_type == "elman": h_t, s_t = self.model.soft_max_return_hidden_layer([word_window], [pos_window]) self.softmax_history.append(s_t) if len(self.state_history) == 20: self.state_history.pop(0) # pop first one self.state_history.append(h_t) else: raise NotImplementedError("no softmax implemented for\ {0} model".format(self.model_type)) softmax = np.concatenate(self.softmax_history) # 3. do the decoding on the softmax if "disf" in self.args.tags: edit_tag = "<e/><cc>" if "uttseg" in self.args.tags else "<e/>" # print self.tag_to_index_map[edit_tag] adjustsoftmax = np.concatenate( (softmax, softmax[:, self.tag_to_index_map[edit_tag]].reshape( softmax.shape[0], 1)), 1) else: adjustsoftmax = softmax last_n_timings = None if ((not self.args.use_timing_data) or not timing) \ else get_last_n_features("timings", self.word_graph, len(self.word_graph)-1, n=3) new_tags = self.decoder.viterbi_incremental( adjustsoftmax, a_range=(len(adjustsoftmax) - 1, len(adjustsoftmax)), changed_suffix_only=True, timing_data=last_n_timings, words=[word]) # print "new tags", new_tags prev_output_tags = deepcopy(self.output_tags) self.output_tags = self.output_tags[:len(self.output_tags) - (len(new_tags) - 1)] + new_tags # 4. convert to standardized output format if "simple" in self.args.tags: for p in range( len(self.output_tags) - (len(new_tags) + 1), len(self.output_tags)): rps = self.output_tags[p] self.output_tags[p] = rps.replace('rm-0', 'rps id="{}"'.format(p)) if "<i" in self.output_tags[p]: self.output_tags[p] = self.output_tags[p].\ replace("<e/>", "").replace("<i", "<e/><i") else: # new_words = [word] words = get_last_n_features("words", self.word_graph, len(self.word_graph) - 1, n=len(self.word_graph) - (self.window_size - 1)) self.output_tags = convert_from_inc_disfluency_tags_to_eval_tags( self.output_tags, words, start=len(self.output_tags) - (len(new_tags)), representation=self.args.tags) if diff_only: for i, old_new in enumerate(zip(prev_output_tags, self.output_tags)): old, new = old_new if old != new: return self.output_tags[i:] return self.output_tags[len(prev_output_tags):] return self.output_tags def tag_utterance(self, utterance): """Tags entire utterance, only possible on models trained on unsegmented data. """ if not self.args.utts_presegmented: raise NotImplementedError("Tagger trained on unsegmented data,\ please call tag_prefix(words) instead.") # non segmenting self.reset() # always starts in initial state if not self.args.pos: # no pos tag model utterance = [(w, None, t) for w, p, t in utterance] # print "Warning: not using pos tags as not pos tag model" if not self.args.use_timing_data: utterance = [(w, p, None) for w, p, t in utterance] # print "Warning: not using timing durations as no timing model" for w, p, t in utterance: if self.args.pos: self.tag_new_word(w, pos=p, timing=t) return self.output_tags def rollback(self, backwards): super(DeepDisfluencyTagger, self).rollback(backwards) self.state_history = self.state_history[:len(self.state_history) - backwards] self.softmax_history = self.softmax_history[:len(self.softmax_history ) - backwards] self.decoder.rollback(backwards) def init_deep_model_internal_state(self): if self.model_type == "lstm": self.model.load_weights(c0=self.initial_c0_state, h0=self.initial_h0_state) elif self.model_type == "elman": self.model.load_weights(h0=self.initial_h0_state) def reset(self): super(DeepDisfluencyTagger, self).reset() self.word_graph = [("<s>", "<s>", 0)] * \ (self.window_size - 1) self.state_history = [] self.softmax_history = [] self.decoder.viterbi_init() self.init_deep_model_internal_state() def evaluate_fast_from_matrices(self, validation_matrices, tag_file, idx_to_label_dict): output = [] true_y = [] for v in validation_matrices: words_idx, pos_idx, extra, y, indices = v if extra: output.extend( self.model.classify_by_index(words_idx, indices, pos_idx, extra)) else: output.extend( self.model.classify_by_index(words_idx, indices, pos_idx)) true_y.extend(y) p_r_f_tags = precision_recall_fscore_support(true_y, output, average='macro') tag_summary = classification_report( true_y, output, labels=[i for i in xrange(len(idx_to_label_dict.items()))], target_names=[ idx_to_label_dict[i] for i in xrange(len(idx_to_label_dict.items())) ]) print tag_summary results = { "f1_rmtto": p_r_f_tags[2], "f1_rm": p_r_f_tags[2], "f1_tto1": p_r_f_tags[2], "f1_tto2": p_r_f_tags[2] } results.update({'f1_tags': p_r_f_tags[2], 'tag_summary': tag_summary}) return results def train_net(self, train_dialogues_filepath=None, validation_dialogues_filepath=None, model_dir=None, tag_accuracy_file_path=None): """Train the internal deep learning model from a list of dialogue matrices. """ tag_accuracy_file = open(tag_accuracy_file_path, "a") print "Verifying files..." for filepath in [ train_dialogues_filepath, validation_dialogues_filepath ]: if not verify_dialogue_data_matrices_from_folder( filepath, word_dict=self.word_to_index_map, pos_dict=self.pos_to_index_map, tag_dict=self.tag_to_index_map, n_lm=self.args.n_language_model_features, n_acoustic=self.args.n_acoustic_features): raise Exception("Dialogue vectors in wrong format!\ See README.md.") lr = self.args.lr # even if decay, start with specific lr n_extra = self.args.n_language_model_features + \ self.args.n_acoustic_features # validation matrices filepath much smaller so can store these # and preprocess them all: validation_matrices = [ np.load(validation_dialogues_filepath + "/" + fp) for fp in os.listdir(validation_dialogues_filepath) ] validation_matrices = [ dialogue_data_and_indices_from_matrix( d_matrix, n_extra, pre_seg=self.args.utts_presegmented, window_size=self.window_size, bs=self.args.bs, tag_rep=self.args.tags, tag_to_idx_map=self.tag_to_index_map, in_utterances=self.args.utts_presegmented) for d_matrix in validation_matrices ] idx_2_label_dict = {v: k for k, v in self.tag_to_index_map.items()} if not os.path.exists(model_dir): os.mkdir(model_dir) start = 1 # by default start from the first epoch best_score = 0 best_epoch = 0 print "Net training started..." for e in range(start, self.args.n_epochs + 1): tic = time.time() epoch_folder = model_dir + "/epoch_{}".format(e) if not os.path.exists(epoch_folder): os.mkdir(epoch_folder) train_loss = 0 # TODO IO is slow, where the memory allows do in one load_separately = True test = False if load_separately: for i, dialogue_f in enumerate( os.listdir(train_dialogues_filepath)): if test and i > 3: break print dialogue_f d_matrix = np.load(train_dialogues_filepath + "/" + dialogue_f) word_idx, pos_idx, extra, y, indices = \ dialogue_data_and_indices_from_matrix( d_matrix, n_extra, window_size=self.window_size, bs=self.args.bs, pre_seg=self.args.utts_presegmented ) # for i in range(len(indices)): # print i, word_idx[i], pos_idx[i], \ # y[i], indices[i] train_loss += self.model.fit(word_idx, y, lr, indices, pos_idx=pos_idx, extra_features=extra) print '[learning] file %i >>' % (i+1),\ 'completed in %.2f (sec) <<\r' % (time.time() - tic) # save the initial states we've learned to override the random self.initial_h0_state = self.model.h0.get_value() if self.args.model_type == "lstm": self.initial_c0_state = self.model.c0.get_value() # reset and evaluate simply self.reset() results = self.evaluate_fast_from_matrices( validation_matrices, tag_accuracy_file, idx_to_label_dict=idx_2_label_dict) val_score = results['f1_tags'] #TODO get best score type print "epoch training loss", train_loss print '[learning] epoch %i >>' % (e),\ 'completed in %.2f (sec) <<\r' % (time.time() - tic) print "validation score", val_score tag_accuracy_file.write( str(e) + "\n" + results['tag_summary'] + "\n%%%%%%%%%%\n") tag_accuracy_file.flush() print "saving model..." self.model.save(epoch_folder) # Epoch file dump # checking patience and decay, if applicable # stopping criterion if val_score > best_score: self.model.save(model_dir) best_score = val_score print 'NEW BEST raw labels at epoch ', e, 'best valid',\ best_score best_epoch = e # stopping criteria = if no improvement in 10 epochs if e - best_epoch >= 10: print "stopping, no improvement in 10 epochs" break if self.args.decay and (e - best_epoch) > 1: # just a steady decay if things aren't improving for 2 epochs # a hidden hyperparameter decay_rate = 0.85 lr *= decay_rate print "learning rate decayed, now ", lr if lr < 1e-5: print "stopping, below learning rate threshold" break print '[learning and testing] epoch %i >>' % (e),\ 'completed in %.2f (sec) <<\r' % (time.time()-tic) print 'BEST RESULT: epoch', best_epoch, 'valid score', best_score tag_accuracy_file.close() return best_epoch def incremental_output_from_file(self, source_file_path, target_file_path=None, is_asr_results_file=False): """Return the incremental output in an increco style given the incoming words + POS. E.g.: Speaker: KB3_1 Time: 1.50 KB3_1:1 0.00 1.12 $unc$yes NNP <f/><tc/> Time: 2.10 KB3_1:1 0.00 1.12 $unc$yes NNP <rms id="1"/><tc/> KB3_1:2 1.12 2.00 because IN <rps id="1"/><cc/> Time: 2.5 KB3_1:2 1.12 2.00 because IN <rps id="1"/><rpndel id="1"/><cc/> from an ASR increco style input without the POStags: or a normal style disfluency dectection ground truth corpus: Speaker: KB3_1 KB3_1:1 0.00 1.12 $unc$yes NNP <rms id="1"/><tc/> KB3_1:2 1.12 2.00 $because IN <rps id="1"/><cc/> KB3_1:3 2.00 3.00 because IN <f/><cc/> KB3_1:4 3.00 4.00 theres EXVBZ <f/><cc/> KB3_1:6 4.00 5.00 a DT <f/><cc/> KB3_1:7 6.00 7.10 pause NN <f/><cc/> :param source_file_path: str, file path to the input file :param target_file_path: str, file path to output in the above format :param is_asr_results_file: bool, whether the input is increco style """ if target_file_path: target_file = open(target_file_path, "w") if not self.args.do_utt_segmentation: print "not doing utt seg, using pre-segmented file" if is_asr_results_file: return NotImplementedError if 'timings' in source_file_path: print "input file has timings" if not is_asr_results_file: dialogues = [] IDs, timings, words, pos_tags, labels = \ get_tag_data_from_corpus_file(source_file_path) for dialogue, a, b, c, d in zip(IDs, timings, words, pos_tags, labels): dialogues.append((dialogue, (a, b, c, d))) else: print "no timings in input file, creating fake timings" raise NotImplementedError for speaker, speaker_data in dialogues: # if "4565" in speaker: quit() print speaker self.reset() # reset at the beginning of each dialogue if target_file_path: target_file.write("Speaker: " + str(speaker) + "\n\n") timing_data, lex_data, pos_data, labels = speaker_data # iterate through the utterances # utt_idx = -1 current_time = 0 for i in range(0, len(timing_data)): # print i, timing_data[i] _, end = timing_data[i] if (not self.args.do_utt_segmentation) \ and "<t" in labels[i]: self.reset() # reset after each utt if non pre-seg # utt_idx = frames[i] timing = None if 'timings' in source_file_path and self.args.use_timing_data: timing = end - current_time word = lex_data[i] pos = pos_data[i] diff = self.tag_new_word(word, pos, timing, diff_only=True, rollback=0) current_time = end if target_file_path: target_file.write("Time: " + str(current_time) + "\n") new_words = lex_data[i - (len(diff) - 1):i + 1] new_pos = pos_data[i - (len(diff) - 1):i + 1] new_timings = timing_data[i - (len(diff) - 1):i + 1] for t, w, p, tag in zip(new_timings, new_words, new_pos, diff): target_file.write("\t".join( [str(t[0]), str(t[1]), w, p, tag])) target_file.write("\n") target_file.write("\n") target_file.write("\n") def train_decoder(self, tag_file): raise NotImplementedError def save_decoder_model(self, dir_path): raise NotImplementedError
def __init__(self, config_file=None, config_number=None, saved_model_dir=None, pos_tagger=None, language_model=None, pos_language_model=None, edit_language_model=None, timer=None, timer_scaler=None, use_timing_data=False): if not config_file: config_file = os.path.dirname(os.path.realpath(__file__)) +\ "/../experiments/experiment_configs.csv" config_number = 35 print "No config file, using default", config_file, config_number super(DeepDisfluencyTagger, self).__init__(config_file, config_number, saved_model_dir) print "Processing args from config number {} ...".format(config_number) self.args = process_arguments(config_file, config_number, use_saved=False, hmm=True) # separate manual setting setattr(self.args, "use_timing_data", use_timing_data) print "Intializing model from args..." self.model = self.init_model_from_config(self.args) # load a model from a folder if specified if saved_model_dir: print "Loading saved weights from", saved_model_dir self.load_model_params_from_folder(saved_model_dir, self.args.model_type) else: print "WARNING no saved model params, needs training." print "Loading original embeddings" self.load_embeddings(self.args.embeddings) if pos_tagger: print "Loading POS tagger..." self.pos_tagger = pos_tagger elif self.args.pos: print "No POS tagger specified,loading default CRF switchboard one" self.pos_tagger = CRFTagger() tagger_path = os.path.dirname(os.path.realpath(__file__)) +\ "/../feature_extraction/crfpostagger" self.pos_tagger.set_model_file(tagger_path) if self.args.n_language_model_features > 0 or \ 'noisy_channel' in self.args.decoder_type: print "training language model..." self.init_language_models(language_model, pos_language_model, edit_language_model) if timer: print "loading timer..." self.timing_model = timer self.timing_model_scaler = timer_scaler else: # self.timing_model = None # self.timing_model_scaler = None print "No timer specified, using default switchboard one" timer_path = os.path.dirname(os.path.realpath(__file__)) +\ '/../decoder/timing_models/' + \ 'LogReg_balanced_timing_classifier.pkl' with open(timer_path, 'rb') as fid: self.timing_model = cPickle.load(fid) timer_scaler_path = os.path.dirname(os.path.realpath(__file__)) +\ '/../decoder/timing_models/' + \ 'LogReg_balanced_timing_scaler.pkl' with open(timer_scaler_path, 'rb') as fid: self.timing_model_scaler = cPickle.load(fid) # TODO a hack # self.timing_model_scaler.scale_ = \ # self.timing_model_scaler.std_.copy() print "Loading decoder..." hmm_dict = deepcopy(self.tag_to_index_map) # add the interegnum tag if "disf" in self.args.tags: intereg_ind = len(hmm_dict.keys()) interreg_tag = \ "<i/><cc/>" if "uttseg" in self.args.tags else "<i/>" hmm_dict[interreg_tag] = intereg_ind # add the interregnum tag # decoder_file = os.path.dirname(os.path.realpath(__file__)) + \ # "/../decoder/model/{}_tags".format(self.args.tags) noisy_channel = None if 'noisy_channel' in self.args.decoder_type: noisy_channel = SourceModel(self.lm, self.pos_lm, uttseg=self.args.do_utt_segmentation) self.decoder = FirstOrderHMM( hmm_dict, markov_model_file=self.args.tags, timing_model=self.timing_model, timing_model_scaler=self.timing_model_scaler, constraint_only=True, noisy_channel=noisy_channel) # getting the states in the right shape self.state_history = [] self.softmax_history = [] # self.convert_to_output_tags = get_conversion_method(self.args.tags) self.reset()