def __init__(self, h_max_length=20, b_max_length=200, trainable=False, lstm_layers=2, mlp_layers=1, num_neurons=[128, 128, 32], share_parameters=True, average_pooling=False, optimizer=tf.train.AdamOptimizer, learning_rate=0.001, batch_size=128, activation=tf.nn.relu, initializer=he_init, num_epoch=20, batch_norm_momentum=None, dropout_rate=None, max_check_without_progress=20, show_progress=10, tensorboard_logdir=None, random_state=None, embedding=None, l2_lambda=0.01): LSTM.__init__(self, h_max_length, b_max_length, trainable, lstm_layers, mlp_layers, num_neurons, share_parameters, average_pooling, optimizer, learning_rate, batch_size, activation, initializer, num_epoch, batch_norm_momentum, dropout_rate, max_check_without_progress, show_progress, tensorboard_logdir, random_state, embedding, l2_lambda)
def __init__(self, h_max_length=20, b_max_length=200, trainable=False, lstm_layers=2, mlp_layers=1, num_neurons=[128, 128, 32], share_parameters=True, average_pooling=False, optimizer=tf.train.AdamOptimizer, learning_rate=0.001, batch_size=128, activation=tf.nn.relu, initializer=he_init, num_epoch=100, batch_norm_momentum=None, dropout_rate=None, max_check_without_progress=10, show_progress=10, tensorboard_logdir=None, random_state=None, embedding=None, l2_lambda=0.01, vocab_size=None, n_outputs=3, pos_weight=None): LSTM.__init__(self, h_max_length, b_max_length, trainable, lstm_layers, mlp_layers, num_neurons, share_parameters, average_pooling, optimizer, learning_rate, batch_size, activation, initializer, num_epoch, batch_norm_momentum, dropout_rate, max_check_without_progress, show_progress, tensorboard_logdir, random_state, embedding, l2_lambda, vocab_size) self.mlp_layers = len(num_neurons) - 2 self.vocab_size = vocab_size self.embedding_size = 300 + dim_fasttext self.n_outputs = n_outputs self.pos_weight = pos_weight self._graph = None self._classes = None self._session = None self.logger = LogHelper.get_logger(self.__class__.__name__) if self.embedding is None and self.vocab_size is None: raise Exception("Either embedding or vocab_size must be set!")
def __init__(self, h_max_length=20, b_max_length=200, trainable=False, lstm_layers=2, mlp_layers=1, num_neurons=[128, 128, 32], share_parameters=True, average_pooling=False, optimizer=tf.train.AdamOptimizer, learning_rate=0.001, batch_size=128, activation=tf.nn.relu, initializer=he_init, num_epoch=40, batch_norm_momentum=None, dropout_rate=None, max_check_without_progress=20, show_progress=10, tensorboard_logdir=None, random_state=None, embedding=None, l2_lambda=0.01, word_output_size=64, sent_output_size=64, vocab_size=None): LSTM.__init__(self, h_max_length, b_max_length, trainable, lstm_layers, mlp_layers, num_neurons, share_parameters, average_pooling, optimizer, learning_rate, batch_size, activation, initializer, num_epoch, batch_norm_momentum, dropout_rate, max_check_without_progress, show_progress, tensorboard_logdir, random_state, embedding, l2_lambda, vocab_size) self.word_output_size = word_output_size self.sent_output_size = sent_output_size self.vocab_size = vocab_size self.embedding_size = 100 if self.embedding is None and self.vocab_size is None: raise Exception("Either embedding or vocab_size must be setted!")