def train(factrueval2016_devset_dir: str, split_by_paragraphs: bool, elmo_will_be_tuned: bool, max_epochs: int, batch_size: int, lr: float, gpu_memory_frac: float, model_name: str) -> ELMo_NER: if os.path.isfile(model_name): with open(model_name, 'rb') as fp: recognizer = pickle.load(fp) assert isinstance(recognizer, ELMo_NER) print('The NER has been successfully loaded from the file `{0}`...'. format(model_name)) print('') else: temp_json_name = tempfile.NamedTemporaryFile(mode='w').name try: factrueval2016_to_json(factrueval2016_devset_dir, temp_json_name, split_by_paragraphs) X, y = load_dataset(temp_json_name) finally: if os.path.isfile(temp_json_name): os.remove(temp_json_name) print('Data for training have been loaded...') print('Number of samples is {0}.'.format(len(y))) print('') max_number_of_tokens = 0 tokenizer = NISTTokenizer() for cur in X: n_tokens = len(tokenizer.international_tokenize(cur)) if n_tokens > max_number_of_tokens: max_number_of_tokens = n_tokens del tokenizer print('Maximal number of tokens is {0}.'.format(max_number_of_tokens)) n_tokens = 2 while n_tokens < max_number_of_tokens: n_tokens *= 2 elmo_hub_module_handle = 'http://files.deeppavlov.ai/deeppavlov_data/elmo_ru-news_wmt11-16_1.5M_steps.tar.gz' recognizer = ELMo_NER(finetune_elmo=elmo_will_be_tuned, batch_size=batch_size, l2_reg=1e-3, max_seq_length=n_tokens, elmo_hub_module_handle=elmo_hub_module_handle, validation_fraction=0.25, max_epochs=max_epochs, patience=5, gpu_memory_frac=gpu_memory_frac, verbose=True, random_seed=42, lr=lr) recognizer.fit(X, y) with open(model_name, 'wb') as fp: pickle.dump(recognizer, fp) print('') print( 'The NER has been successfully fitted and saved into the file `{0}`...' .format(model_name)) print('') return recognizer
def recognize(factrueval2016_testset_dir: str, split_by_paragraphs: bool, recognizer: ELMo_NER, results_dir: str): temp_json_name = tempfile.NamedTemporaryFile(mode='w').name try: factrueval2016_to_json(factrueval2016_testset_dir, temp_json_name, split_by_paragraphs) with codecs.open(temp_json_name, mode='r', encoding='utf-8', errors='ignore') as fp: data_for_testing = json.load(fp) _, true_entities = load_dataset(temp_json_name) finally: if os.path.isfile(temp_json_name): os.remove(temp_json_name) texts = [] additional_info = [] for cur_document in data_for_testing: base_name = os.path.join(results_dir, cur_document['base_name'] + '.task1') for cur_paragraph in cur_document['paragraph_bounds']: texts.append( cur_document['text'][cur_paragraph[0]:cur_paragraph[1]]) additional_info.append((base_name, cur_paragraph)) print('Data for final testing have been loaded...') print('Number of samples is {0}.'.format(len(true_entities))) print('') predicted_entities = recognizer.predict(texts) assert len(predicted_entities) == len(true_entities) f1, precision, recall, quality_by_entities = calculate_prediction_quality( true_entities, predicted_entities, recognizer.classes_list_) print('All entities:') print(' F1-score is {0:.2%}.'.format(f1)) print(' Precision is {0:.2%}.'.format(precision)) print(' Recall is {0:.2%}.'.format(recall)) for ne_type in sorted(list(quality_by_entities.keys())): print(' {0}'.format(ne_type)) print(' F1-score is {0:.2%}.'.format( quality_by_entities[ne_type][0])) print(' Precision is {0:.2%}.'.format( quality_by_entities[ne_type][1])) print(' Recall is {0:.2%}.'.format(quality_by_entities[ne_type][2])) results_for_factrueval_2016 = dict() for sample_idx, cur_result in enumerate(predicted_entities): base_name, paragraph_bounds = additional_info[sample_idx] for entity_type in cur_result: if entity_type == 'ORG': prepared_entity_type = 'org' elif entity_type == 'PERSON': prepared_entity_type = 'per' elif entity_type == 'LOCATION': prepared_entity_type = 'loc' else: prepared_entity_type = None if prepared_entity_type is None: raise ValueError( '`{0}` is unknown entity type!'.format(entity_type)) for entity_bounds in cur_result[entity_type]: postprocessed_entity = (prepared_entity_type, entity_bounds[0] + paragraph_bounds[0], entity_bounds[1] - entity_bounds[0]) if base_name in results_for_factrueval_2016: results_for_factrueval_2016[base_name].append( postprocessed_entity) else: results_for_factrueval_2016[base_name] = [ postprocessed_entity ] for base_name in results_for_factrueval_2016: with codecs.open(base_name, mode='w', encoding='utf-8', errors='ignore') as fp: for cur_entity in sorted(results_for_factrueval_2016[base_name], key=lambda it: (it[1], it[2], it[0])): fp.write('{0} {1} {2}\n'.format(cur_entity[0], cur_entity[1], cur_entity[2]))
def train(factrueval2016_devset_dir: str, split_by_paragraphs: bool, elmo_will_be_tuned: bool, use_additional_features: bool, max_epochs: int, patience: int, batch_size: int, lr: float, l2: float, gpu_memory_frac: float, model_name: str, collection3_dir: Union[str, None] = None) -> ELMo_NER: if os.path.isfile(model_name): with open(model_name, 'rb') as fp: recognizer = pickle.load(fp) assert isinstance(recognizer, ELMo_NER) print('The NER has been successfully loaded from the file `{0}`...'. format(model_name)) print('') else: temp_json_name = tempfile.NamedTemporaryFile(mode='w').name try: factrueval2016_to_json(factrueval2016_devset_dir, temp_json_name, split_by_paragraphs) X, y = load_dataset_from_json(temp_json_name) finally: if os.path.isfile(temp_json_name): os.remove(temp_json_name) print('The FactRuEval-2016 data for training have been loaded...') print('Number of samples is {0}.'.format(len(y))) print('') max_number_of_tokens = 0 pipeline = create_udpipe_pipeline('ru') for cur in X: spacy_doc = pipeline(cur) n_tokens = 0 for _ in spacy_doc: n_tokens += 1 del spacy_doc if n_tokens > max_number_of_tokens: max_number_of_tokens = n_tokens del pipeline print('Maximal number of tokens is {0}.'.format(max_number_of_tokens)) n_tokens = 2 while n_tokens < max_number_of_tokens: n_tokens *= 2 elmo_hub_module_handle = 'http://files.deeppavlov.ai/deeppavlov_data/elmo_ru-news_wmt11-16_1.5M_steps.tar.gz' recognizer = ELMo_NER(finetune_elmo=elmo_will_be_tuned, batch_size=batch_size, l2_reg=l2, max_seq_length=n_tokens, elmo_hub_module_handle=elmo_hub_module_handle, validation_fraction=0.25, max_epochs=max_epochs, patience=patience, gpu_memory_frac=gpu_memory_frac, verbose=True, random_seed=42, lr=lr, udpipe_lang='ru', use_additional_features=use_additional_features) if collection3_dir is None: recognizer.fit(X, y) else: X_train, y_train = load_dataset_from_brat(collection3_dir, split_by_paragraphs=True) if not split_by_paragraphs: X_train, y_train = divide_dataset_by_sentences( X_train, y_train, sent_tokenize_func=ru_sent_tokenize) for sample_idx in range(len(y_train)): new_y_sample = dict() for ne_type in sorted(list(y_train[sample_idx].keys())): if ne_type == 'PER': new_y_sample['PERSON'] = y_train[sample_idx][ne_type] elif ne_type == 'LOC': new_y_sample['LOCATION'] = y_train[sample_idx][ne_type] else: new_y_sample[ne_type] = y_train[sample_idx][ne_type] y_train[sample_idx] = new_y_sample del new_y_sample print('The Collection3 data for training have been loaded...') print('Number of samples is {0}.'.format(len(y_train))) print('') recognizer.fit(X_train, y_train, validation_data=(X, y)) with open(model_name, 'wb') as fp: pickle.dump(recognizer, fp) print('') print( 'The NER has been successfully fitted and saved into the file `{0}`...' .format(model_name)) print('') return recognizer