def setUp(self): self.session = tf.Session() self.kern = gplvm.SEKernel(session=self.session) shape = (8, 3) self.X = tf.constant(np.random.uniform(size=shape), dtype=c.float_type) self.Y = tf.constant(np.random.uniform(size=shape), dtype=c.float_type) self.session.run(tf.global_variables_initializer())
output_dir=flags['latent_samples_dir']) training_data = Data(flags['training_data'], shuffle_first=flags['shuffle_data'], batch_size=flags['training_batch_size'], log_epochs=flags['data_log_epochs'], name='TrainingData') Y = training_data.next_batch() config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) session = tf.Session(config=config) kern = gplvm.SEKernel(session=session, alpha=flags['kernel_alpha'], gamma=flags['kernel_gamma'], ARD=flags['kernel_ard'], Q=flags['q']) layer = gplvm.GPLVM(Y=Y, Q=flags['q'], kern=kern, noise_variance=flags['noise_variance'], latent_point_plotter=lp_plotter, latent_sample_plotter=ls_plotter, session=session, name=flags['gplvm_name']) layer.build_model() optimizer = tf.train.AdamOptimizer(learning_rate=flags['learning_rate'])