コード例 #1
0
    def test_count_pairs(self):
        batches = 1
        frames = 2
        classes = 4
        prob = 0.5
        expected = batches * frames * classes * (classes + 1) / prob

        # channels_last
        y = np.random.randint(low=0,
                              high=classes + 1,
                              size=(batches, frames, 30, 30, 1))
        pairs = tracking_utils.count_pairs(y, same_probability=prob)
        self.assertEqual(pairs, expected)

        # channels_first
        y = np.random.randint(low=0,
                              high=classes + 1,
                              size=(batches, 1, frames, 30, 30))
        pairs = tracking_utils.count_pairs(y,
                                           same_probability=prob,
                                           data_format='channels_first')
        self.assertEqual(pairs, expected)
コード例 #2
0
def train_model_siamese_daughter(model,
                                 dataset,
                                 expt='',
                                 test_size=.1,
                                 n_epoch=100,
                                 batch_size=1,
                                 num_gpus=None,
                                 crop_dim=32,
                                 min_track_length=1,
                                 neighborhood_scale_size=10,
                                 features=None,
                                 optimizer=SGD(lr=0.01,
                                               decay=1e-6,
                                               momentum=0.9,
                                               nesterov=True),
                                 log_dir='/data/tensorboard_logs',
                                 model_dir='/data/models',
                                 model_name=None,
                                 focal=False,
                                 gamma=0.5,
                                 lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                                 rotation_range=0,
                                 flip=True,
                                 shear=0,
                                 zoom_range=0,
                                 seed=None,
                                 **kwargs):
    is_channels_first = K.image_data_format() == 'channels_first'

    if model_name is None:
        todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
        data_name = os.path.splitext(os.path.basename(dataset))[0]
        model_name = '{}_{}_[{}]_neighs={}_epochs={}_seed={}_{}'.format(
            todays_date, data_name, ','.join(f[0] for f in sorted(features)),
            neighborhood_scale_size, n_epoch, seed, expt)
    model_path = os.path.join(model_dir, '{}.h5'.format(model_name))
    loss_path = os.path.join(model_dir, '{}.npz'.format(model_name))

    print('training on dataset:', dataset)
    print('saving model at:', model_path)
    print('saving loss at:', loss_path)

    train_dict, val_dict = get_data(dataset,
                                    mode='siamese_daughters',
                                    seed=seed,
                                    test_size=test_size)

    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', val_dict['X'].shape)
    print('y_test shape:', val_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)

    n_classes = model.layers[-1].output_shape[1 if is_channels_first else -1]

    def loss_function(y_true, y_pred):
        if focal:
            return losses.weighted_focal_loss(y_true,
                                              y_pred,
                                              gamma=gamma,
                                              n_classes=n_classes,
                                              from_logits=False)
        return losses.weighted_categorical_crossentropy(y_true,
                                                        y_pred,
                                                        n_classes=n_classes,
                                                        from_logits=False)

    if num_gpus is None:
        num_gpus = train_utils.count_gpus()

    if num_gpus >= 2:
        batch_size = batch_size * num_gpus
        model = train_utils.MultiGpuModel(model, num_gpus)

    print('Training on {} GPUs'.format(num_gpus))

    model.compile(loss=loss_function,
                  optimizer=optimizer,
                  metrics=['accuracy'])

    print('Using real-time data augmentation.')

    # this will do preprocessing and realtime data augmentation
    datagen = image_generators.SiameseDataGenerator(
        rotation_range=rotation_range,
        shear_range=shear,
        zoom_range=zoom_range,
        horizontal_flip=flip,
        vertical_flip=flip)

    datagen_val = image_generators.SiameseDataGenerator(rotation_range=0,
                                                        zoom_range=0,
                                                        shear_range=0,
                                                        horizontal_flip=0,
                                                        vertical_flip=0)

    total_train_pairs = tracking_utils.count_pairs(train_dict['y'],
                                                   same_probability=5.0)
    total_test_pairs = tracking_utils.count_pairs(val_dict['y'],
                                                  same_probability=5.0)

    train_data = datagen.flow(train_dict,
                              crop_dim=crop_dim,
                              batch_size=batch_size,
                              min_track_length=min_track_length,
                              neighborhood_scale_size=neighborhood_scale_size,
                              features=features)

    val_data = datagen_val.flow(
        val_dict,
        crop_dim=crop_dim,
        batch_size=batch_size,
        min_track_length=min_track_length,
        neighborhood_scale_size=neighborhood_scale_size,
        features=features)

    print('total_train_pairs:', total_train_pairs)
    print('total_test_pairs:', total_test_pairs)
    print('batch size:', batch_size)
    print('validation_steps: ', total_test_pairs // batch_size)

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit_generator(
        train_data,
        steps_per_epoch=total_train_pairs // batch_size,
        epochs=n_epoch,
        validation_data=val_data,
        validation_steps=total_test_pairs // batch_size,
        callbacks=[
            callbacks.LearningRateScheduler(lr_sched),
            callbacks.ModelCheckpoint(model_path,
                                      monitor='val_loss',
                                      verbose=1,
                                      save_best_only=True,
                                      save_weights_only=num_gpus >= 2),
            callbacks.TensorBoard(log_dir=os.path.join(log_dir, model_name))
        ])

    model.save_weights(model_path)
    np.savez(loss_path, loss_history=loss_history.history)

    return model
コード例 #3
0
def train_model_siamese_daughter(model,
                                 dataset,
                                 expt='',
                                 test_size=.2,
                                 n_epoch=100,
                                 batch_size=1,
                                 num_gpus=None,
                                 crop_dim=32,
                                 min_track_length=1,
                                 neighborhood_scale_size=10,
                                 features=None,
                                 optimizer=SGD(lr=0.01,
                                               decay=1e-6,
                                               momentum=0.9,
                                               nesterov=True),
                                 log_dir='/data/tensorboard_logs',
                                 model_dir='/data/models',
                                 model_name=None,
                                 focal=False,
                                 gamma=0.5,
                                 lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                                 rotation_range=0,
                                 flip=True,
                                 shear=0,
                                 zoom_range=0,
                                 seed=0,
                                 **kwargs):
    is_channels_first = K.image_data_format() == 'channels_first'

    if model_name is None:
        todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
        data_name = os.path.splitext(os.path.basename(dataset))[0]
        model_name = '{}_{}_[{}]_neighs={}_epochs={}_seed={}_{}'.format(
            todays_date, data_name, ','.join(f[0] for f in sorted(features)),
            neighborhood_scale_size, n_epoch, seed, expt)
    model_path = os.path.join(model_dir, '{}.h5'.format(model_name))
    loss_path = os.path.join(model_dir, '{}.npz'.format(model_name))

    print('training on dataset:', dataset)
    print('saving model at:', model_path)
    print('saving loss at:', loss_path)

    train_dict, val_dict = get_data(dataset,
                                    mode='siamese_daughters',
                                    seed=seed,
                                    test_size=test_size)

    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', val_dict['X'].shape)
    print('y_test shape:', val_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)

    n_classes = model.layers[-1].output_shape[1 if is_channels_first else -1]

    def loss_function(y_true, y_pred):
        if focal:
            return losses.weighted_focal_loss(y_true,
                                              y_pred,
                                              gamma=gamma,
                                              n_classes=n_classes,
                                              from_logits=False)
        return losses.weighted_categorical_crossentropy(y_true,
                                                        y_pred,
                                                        n_classes=n_classes,
                                                        from_logits=False)

    if num_gpus is None:
        num_gpus = train_utils.count_gpus()

    print('Training on {} GPUs'.format(num_gpus))

    model.compile(loss=loss_function,
                  optimizer=optimizer,
                  metrics=['accuracy'])

    print('Using real-time data augmentation.')

    # this will do preprocessing and realtime data augmentation
    datagen = image_generators.SiameseDataGenerator(
        rotation_range=rotation_range,
        shear_range=shear,
        zoom_range=zoom_range,
        horizontal_flip=flip,
        vertical_flip=flip)

    datagen_val = image_generators.SiameseDataGenerator(rotation_range=0,
                                                        zoom_range=0,
                                                        shear_range=0,
                                                        horizontal_flip=0,
                                                        vertical_flip=0)

    # same_probability values have varied from 0.5 to 5.0
    total_train_pairs = tracking_utils.count_pairs(train_dict['y'],
                                                   same_probability=5.0)
    total_test_pairs = tracking_utils.count_pairs(val_dict['y'],
                                                  same_probability=5.0)

    train_data = datagen.flow(train_dict,
                              seed=seed,
                              crop_dim=crop_dim,
                              batch_size=batch_size,
                              min_track_length=min_track_length,
                              neighborhood_scale_size=neighborhood_scale_size,
                              features=features)

    val_data = datagen_val.flow(
        val_dict,
        seed=seed,
        crop_dim=crop_dim,
        batch_size=batch_size,
        min_track_length=min_track_length,
        neighborhood_scale_size=neighborhood_scale_size,
        features=features)

    print('total_train_pairs:', total_train_pairs)
    print('total_test_pairs:', total_test_pairs)
    print('batch size:', batch_size)
    print('validation_steps: ', total_test_pairs // batch_size)

    # Make dicts to map the two generator outputs to the Dataset and model
    # input here is model input and output is model output
    features = sorted(features)

    input_type_dict = {}
    input_shape_dict = {}
    for feature in features:

        feature_name1 = '{}_input1'.format(feature)
        feature_name2 = '{}_input2'.format(feature)

        input_type_dict[feature_name1] = tf.float32
        input_type_dict[feature_name2] = tf.float32

        if feature == 'appearance':
            app1 = tuple([
                None, train_data.min_track_length, train_data.crop_dim,
                train_data.crop_dim, 1
            ])
            app2 = tuple(
                [None, 1, train_data.crop_dim, train_data.crop_dim, 1])

            input_shape_dict[feature_name1] = app1
            input_shape_dict[feature_name2] = app2

        elif feature == 'distance':
            dist1 = tuple([None, train_data.min_track_length, 2])
            dist2 = tuple([None, 1, 2])

            input_shape_dict[feature_name1] = dist1
            input_shape_dict[feature_name2] = dist2

        elif feature == 'neighborhood':
            neighborhood_size = 2 * train_data.neighborhood_scale_size + 1
            neigh1 = tuple([
                None, train_data.min_track_length, neighborhood_size,
                neighborhood_size, 1
            ])
            neigh2 = tuple([None, 1, neighborhood_size, neighborhood_size, 1])

            input_shape_dict[feature_name1] = neigh1
            input_shape_dict[feature_name2] = neigh2

        elif feature == 'regionprop':
            rprop1 = tuple([None, train_data.min_track_length, 3])
            rprop2 = tuple([None, 1, 3])

            input_shape_dict[feature_name1] = rprop1
            input_shape_dict[feature_name2] = rprop2

    output_type_dict = {'classification': tf.int32}
    # Ouput_shape has to be None because we dont know how many cells
    output_shape_dict = {'classification': (None, 3)}

    train_dataset = Dataset.from_generator(lambda: train_data,
                                           (input_type_dict, output_type_dict),
                                           output_shapes=(input_shape_dict,
                                                          output_shape_dict))
    val_dataset = Dataset.from_generator(lambda: val_data,
                                         (input_type_dict, output_type_dict),
                                         output_shapes=(input_shape_dict,
                                                        output_shape_dict))

    train_callbacks = get_callbacks(model_path,
                                    lr_sched=lr_sched,
                                    tensorboard_log_dir=log_dir,
                                    save_weights_only=num_gpus >= 2,
                                    monitor='val_loss',
                                    verbose=1)

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit(train_dataset,
                             steps_per_epoch=total_train_pairs // batch_size,
                             epochs=n_epoch,
                             validation_data=val_dataset,
                             validation_steps=total_test_pairs // batch_size,
                             callbacks=train_callbacks)

    np.savez(loss_path, loss_history=loss_history.history)

    return model