def test_graph_data(self): num_nodes, num_node_features = 5, 32 num_edges, num_edge_features = 6, 32 node_features = np.random.random_sample((num_nodes, num_node_features)) edge_features = np.random.random_sample((num_edges, num_edge_features)) edge_index = np.array([ [0, 1, 2, 2, 3, 4], [1, 2, 0, 3, 4, 0], ]) node_pos_features = None graph = GraphData(node_features=node_features, edge_index=edge_index, edge_features=edge_features, node_pos_features=node_pos_features) assert graph.num_nodes == num_nodes assert graph.num_node_features == num_node_features assert graph.num_edges == num_edges assert graph.num_edge_features == num_edge_features # check convert function pyg_graph = graph.to_pyg_graph() from torch_geometric.data import Data assert isinstance(pyg_graph, Data) dgl_graph = graph.to_dgl_graph() from dgl import DGLGraph assert isinstance(dgl_graph, DGLGraph)
def test_graph_data(self): num_nodes, num_node_features = 5, 32 num_edges, num_edge_features = 6, 32 node_features = np.random.random_sample((num_nodes, num_node_features)) edge_features = np.random.random_sample((num_edges, num_edge_features)) edge_index = np.array([ [0, 1, 2, 2, 3, 4], [1, 2, 0, 3, 4, 0], ]) node_pos_features = None # z is kwargs z = np.random.random(5) graph = GraphData(node_features=node_features, edge_index=edge_index, edge_features=edge_features, node_pos_features=node_pos_features, z=z) assert graph.num_nodes == num_nodes assert graph.num_node_features == num_node_features assert graph.num_edges == num_edges assert graph.num_edge_features == num_edge_features assert graph.z.shape == z.shape assert str( graph ) == 'GraphData(node_features=[5, 32], edge_index=[2, 6], edge_features=[6, 32], z=[5])' # check convert function pyg_graph = graph.to_pyg_graph() from torch_geometric.data import Data assert isinstance(pyg_graph, Data) assert tuple(pyg_graph.z.shape) == z.shape dgl_graph = graph.to_dgl_graph() from dgl import DGLGraph assert isinstance(dgl_graph, DGLGraph)