def test_slice(self): """Test that Slice can be invoked.""" batch_size = 10 n_features = 5 test_tensor_input = np.random.rand(batch_size, n_features) with self.session() as sess: test_tensor = tf.convert_to_tensor(test_tensor_input, dtype=tf.float32) out_tensor = Slice(1)(test_tensor) out_tensor = out_tensor.eval() assert np.allclose(out_tensor, test_tensor_input[:, 1:2])
def test_Slice_pickle(): V = Feature(shape=(None, 10)) out = Slice(5, 1, in_layers=[V]) tg = TensorGraph() tg.add_output(out) tg.set_loss(out) tg.build() tg.save()
def __init__(self, n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type="l2", dropouts=0.5, activation_fns=tf.nn.relu, n_outputs=1, **kwargs): """Creates a progressive network. Only listing parameters specific to progressive networks here. Parameters ---------- n_tasks: int Number of tasks n_features: int Number of input features alpha_init_stddevs: list List of standard-deviations for alpha in adapter layers. layer_sizes: list the size of each dense layer in the network. The length of this list determines the number of layers. weight_init_stddevs: list or float the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer. bias_init_consts: list or float the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer. weight_decay_penalty: float the magnitude of the weight decay penalty to use weight_decay_penalty_type: str the type of penalty to use for weight decay, either 'l1' or 'l2' dropouts: list or float the dropout probablity to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer. activation_fns: list or object the Tensorflow activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer. """ super(ProgressiveMultitaskRegressor, self).__init__(**kwargs) self.n_tasks = n_tasks self.n_features = n_features self.layer_sizes = layer_sizes self.alpha_init_stddevs = alpha_init_stddevs self.weight_init_stddevs = weight_init_stddevs self.bias_init_consts = bias_init_consts self.dropouts = dropouts self.activation_fns = activation_fns self.n_outputs = n_outputs n_layers = len(layer_sizes) if not isinstance(weight_init_stddevs, collections.Sequence): self.weight_init_stddevs = [weight_init_stddevs] * n_layers if not isinstance(alpha_init_stddevs, collections.Sequence): self.alpha_init_stddevs = [alpha_init_stddevs] * n_layers if not isinstance(bias_init_consts, collections.Sequence): self.bias_init_consts = [bias_init_consts] * n_layers if not isinstance(dropouts, collections.Sequence): self.dropouts = [dropouts] * n_layers if not isinstance(activation_fns, collections.Sequence): self.activation_fns = [activation_fns] * n_layers # Add the input features. self.mol_features = Feature(shape=(None, n_features)) self._task_labels = Label(shape=(None, n_tasks)) self._task_weights = Weights(shape=(None, n_tasks)) all_layers = {} outputs = [] for task in range(self.n_tasks): task_layers = [] for i in range(n_layers): if i == 0: prev_layer = self.mol_features else: prev_layer = all_layers[(i - 1, task)] if task > 0: lateral_contrib, trainables = self.add_adapter(all_layers, task, i) task_layers.extend(trainables) layer = Dense( in_layers=[prev_layer], out_channels=layer_sizes[i], activation_fn=None, weights_initializer=TFWrapper( tf.truncated_normal_initializer, stddev=self.weight_init_stddevs[i]), biases_initializer=TFWrapper( tf.constant_initializer, value=self.bias_init_consts[i])) task_layers.append(layer) if i > 0 and task > 0: layer = layer + lateral_contrib assert self.activation_fns[i] is tf.nn.relu, "Only ReLU is supported" layer = ReLU(in_layers=[layer]) if self.dropouts[i] > 0.0: layer = Dropout(self.dropouts[i], in_layers=[layer]) all_layers[(i, task)] = layer prev_layer = all_layers[(n_layers - 1, task)] layer = Dense( in_layers=[prev_layer], out_channels=n_outputs, weights_initializer=TFWrapper( tf.truncated_normal_initializer, stddev=self.weight_init_stddevs[-1]), biases_initializer=TFWrapper( tf.constant_initializer, value=self.bias_init_consts[-1])) task_layers.append(layer) if task > 0: lateral_contrib, trainables = self.add_adapter(all_layers, task, n_layers) task_layers.extend(trainables) layer = layer + lateral_contrib output_layer = self.create_output(layer) outputs.append(output_layer) label = Slice(task, axis=1, in_layers=[self._task_labels]) weight = Slice(task, axis=1, in_layers=[self._task_weights]) task_loss = self.create_loss(layer, label, weight) self.create_submodel(layers=task_layers, loss=task_loss, optimizer=None) outputs = Stack(axis=1, in_layers=outputs) self.add_output(outputs) # Weight decay not activated """