def test_sigmoid(self): """Test invoking Sigmoid in eager mode.""" with context.eager_mode(): input = np.random.rand(5, 10).astype(np.float32) result = layers.Sigmoid()(input) expected = tf.nn.sigmoid(input) assert np.allclose(result, expected)
in_layers=concat1) concat2 = layers.Concat(in_layers=[conv2, deconv1], axis=3) deconv2 = layers.Conv2DTranspose(16, kernel_size=5, stride=2, in_layers=concat2) concat3 = layers.Concat(in_layers=[conv1, deconv2], axis=3) deconv3 = layers.Conv2DTranspose(1, kernel_size=5, stride=2, in_layers=concat3) # Compute the final output. concat4 = layers.Concat(in_layers=[features, deconv3], axis=3) logits = layers.Conv2D(1, kernel_size=5, stride=1, activation_fn=None, in_layers=concat4) output = layers.Sigmoid(logits) model.add_output(output) loss = layers.ReduceSum(layers.SigmoidCrossEntropy(in_layers=(labels, logits))) model.set_loss(loss) if not os.path.exists('./models'): os.mkdir('models') if not os.path.exists('./models/segmentation'): os.mkdir('models/segmentation') if not RETRAIN: model.restore() # Train it and evaluate performance on the test set. if RETRAIN: print("About to fit model for 50 epochs")