コード例 #1
0
 def test_gather(self):
   """Test that Gather can be invoked."""
   in_tensor = np.random.uniform(size=(5, 4)).astype(np.float32)
   with self.session() as sess:
     out_tensor = Gather(indices=[[2], [3]])(in_tensor).eval()
     assert np.array_equal([in_tensor[2], in_tensor[3]], out_tensor)
     out_tensor = Gather()(in_tensor, np.array([[1, 1], [0, 3]])).eval()
     assert np.array_equal([in_tensor[1, 1], in_tensor[0, 3]], out_tensor)
コード例 #2
0
def test_Gather_pickle():
  tg = TensorGraph()
  feature = Feature(shape=(tg.batch_size, 1))
  layer = Gather(indices=[[0], [2], [3]], in_layers=feature)
  tg.add_output(layer)
  tg.set_loss(layer)
  tg.build()
  tg.save()
コード例 #3
0
    def create_layers(self, state, **kwargs):
        i = Reshape(in_layers=[state[0]], shape=(-1, 1))
        i = AddConstant(-1, in_layers=[i])
        i = InsertBatchIndex(in_layers=[i])
        # shape(i) = (batch_size, 1)

        q = Reshape(in_layers=[state[1]], shape=(-1, self.n_queue_obs))
        # shape(q) = (batch_size, n_queue_obs)
        #q = Dense(16, in_layers=[q], activation_fn=tensorflow.nn.relu)
        ## shape(q) = (batch_size, 16)

        x = q
        if not self.single_layer:
            for j in range(1):
                x1 = Dense(8, in_layers=[x], activation_fn=tensorflow.nn.relu)
                x = Concat(in_layers=[q, x1])
        # 1) shape(x) = (batch_size, n_queue_obs)
        # 2) shape(x) = (batch_size, n_queue_obs + 8)

        ps = []
        for j in range(self.n_products):
            p = Dense(n_actions, in_layers=[x])
            ps.append(p)
        p = Stack(in_layers=ps, axis=1)
        # shape(p) = (batch_size, n_products, n_actions)
        p = Gather(in_layers=[p, i])
        # shape(p) = (batch_size, n_actions)
        p = SoftMax(in_layers=[p])

        vs = []
        for j in range(self.n_products):
            v = Dense(1, in_layers=[x])
            vs.append(v)
        v = Stack(in_layers=vs, axis=1)
        # shape(v) = (batch_size, n_products, 1)
        v = Gather(in_layers=[v, i])
        # shape(v) = (batch_size, 1)

        return {'action_prob': p, 'value': v}