コード例 #1
0
ファイル: test_layers.py プロジェクト: ktaneishi/deepchem
 def test_reduce_mean(self):
   """Test that ReduceMean can be invoked."""
   batch_size = 10
   n_features = 5
   in_tensor = np.random.rand(batch_size, n_features)
   with self.session() as sess:
     in_tensor = tf.convert_to_tensor(in_tensor, dtype=tf.float32)
     out_tensor = ReduceMean()(in_tensor)
     out_tensor = out_tensor.eval()
     assert isinstance(out_tensor, np.float32)
コード例 #2
0
ファイル: test_tensor_graph.py プロジェクト: zhoutf/deepchem
 def test_single_task_classifier(self):
     n_data_points = 20
     n_features = 2
     X = np.random.rand(n_data_points, n_features)
     y = [[0, 1] for x in range(n_data_points)]
     dataset = NumpyDataset(X, y)
     features = Feature(shape=(None, n_features))
     dense = Dense(out_channels=2, in_layers=[features])
     output = SoftMax(in_layers=[dense])
     label = Label(shape=(None, 2))
     smce = SoftMaxCrossEntropy(in_layers=[label, dense])
     loss = ReduceMean(in_layers=[smce])
     tg = dc.models.TensorGraph(learning_rate=0.01)
     tg.add_output(output)
     tg.set_loss(loss)
     tg.fit(dataset, nb_epoch=1000)
     prediction = np.squeeze(tg.predict_on_batch(X))
     assert_true(np.all(np.isclose(prediction, y, atol=0.4)))
コード例 #3
0
ファイル: test_tensor_graph.py プロジェクト: zhoutf/deepchem
    def test_invoke_model_eager(self):
        """Test invoking the model with __call__() in eager mode."""
        with context.eager_mode():
            with tfe.IsolateTest():
                batch_size = 5
                tg = dc.models.TensorGraph(batch_size=batch_size)
                features = Feature(shape=(None, 10))
                dense = Dense(10, in_layers=features)
                loss = ReduceMean(in_layers=dense)
                tg.add_output(dense)
                tg.set_loss(loss)
                input = np.random.rand(batch_size, 10).astype(np.float32)

                # We should get the same result with either predict_on_batch() or __call__().

                output1 = tg.predict_on_batch(input)
                output2 = tg(input)
                assert np.allclose(output1, output2.numpy())
コード例 #4
0
    def test_multi_task_regressor(self):
        n_data_points = 20
        n_features = 2

        X = np.random.rand(n_data_points, n_features)
        y1 = np.expand_dims(np.array([0.5 for x in range(n_data_points)]),
                            axis=-1)
        y2 = np.expand_dims(np.array([-0.5 for x in range(n_data_points)]),
                            axis=-1)
        X = NumpyDataset(X)
        ys = [NumpyDataset(y1), NumpyDataset(y2)]

        databag = Databag()

        features = Feature(shape=(None, n_features))
        databag.add_dataset(features, X)

        outputs = []
        losses = []
        for i in range(2):
            label = Label(shape=(None, 1))
            dense = Dense(out_channels=1, in_layers=[features])
            loss = ReduceSquareDifference(in_layers=[dense, label])

            outputs.append(dense)
            losses.append(loss)
            databag.add_dataset(label, ys[i])

        total_loss = ReduceMean(in_layers=losses)

        tg = dc.models.TensorGraph(learning_rate=0.01)
        for output in outputs:
            tg.add_output(output)
        tg.set_loss(total_loss)

        tg.fit_generator(
            databag.iterbatches(epochs=1000,
                                batch_size=tg.batch_size,
                                pad_batches=True))
        predictions = tg.predict_on_generator(databag.iterbatches())
        for i in range(2):
            y_real = ys[i].X
            y_pred = predictions[i]
            assert_true(np.all(np.isclose(y_pred, y_real, atol=1.5)))
コード例 #5
0
    def test_mnist(self):
        from tensorflow.examples.tutorials.mnist import input_data
        mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
        train = dc.data.NumpyDataset(mnist.train.images, mnist.train.labels)
        valid = dc.data.NumpyDataset(mnist.validation.images,
                                     mnist.validation.labels)

        # Images are square 28x28 (batch, height, width, channel)
        feature = Feature(shape=(None, 784), name="Feature")
        make_image = Reshape(shape=(-1, 28, 28, 1), in_layers=[feature])

        conv2d_1 = Conv2d(num_outputs=32, in_layers=[make_image])
        maxpool_1 = MaxPool(in_layers=[conv2d_1])

        conv2d_2 = Conv2d(num_outputs=64, in_layers=[maxpool_1])
        maxpool_2 = MaxPool(in_layers=[conv2d_2])
        flatten = Flatten(in_layers=[maxpool_2])

        dense1 = Dense(out_channels=1024,
                       activation_fn=tf.nn.relu,
                       in_layers=[flatten])
        dense2 = Dense(out_channels=10, in_layers=[dense1])
        label = Label(shape=(None, 10), name="Label")
        smce = SoftMaxCrossEntropy(in_layers=[label, dense2])
        loss = ReduceMean(in_layers=[smce])
        output = SoftMax(in_layers=[dense2])

        tg = dc.models.TensorGraph(model_dir='/tmp/mnist',
                                   batch_size=1000,
                                   use_queue=True)
        tg.add_output(output)
        tg.set_loss(loss)
        tg.fit(train, nb_epoch=2)

        prediction = np.squeeze(tg.predict_proba_on_batch(valid.X))

        fpr = dict()
        tpr = dict()
        roc_auc = dict()
        for i in range(10):
            fpr[i], tpr[i], thresh = roc_curve(valid.y[:, i], prediction[:, i])
            roc_auc[i] = auc(fpr[i], tpr[i])
            assert_true(roc_auc[i] > 0.99)
コード例 #6
0
    def test_multi_task_classifier(self):
        n_data_points = 20
        n_features = 2

        X = np.random.rand(n_data_points, n_features)
        y1 = np.array([[0, 1] for x in range(n_data_points)])
        y2 = np.array([[1, 0] for x in range(n_data_points)])
        X = NumpyDataset(X)
        ys = [NumpyDataset(y1), NumpyDataset(y2)]

        databag = Databag()

        features = Feature(shape=(None, n_features))
        databag.add_dataset(features, X)

        outputs = []
        entropies = []
        for i in range(2):
            label = Label(shape=(None, 2))
            dense = Dense(out_channels=2, in_layers=[features])
            output = SoftMax(in_layers=[dense])
            smce = SoftMaxCrossEntropy(in_layers=[label, dense])

            entropies.append(smce)
            outputs.append(output)
            databag.add_dataset(label, ys[i])

        total_loss = ReduceMean(in_layers=entropies)

        tg = dc.models.TensorGraph(learning_rate=0.01)
        for output in outputs:
            tg.add_output(output)
        tg.set_loss(total_loss)

        tg.fit_generator(
            databag.iterbatches(epochs=1000,
                                batch_size=tg.batch_size,
                                pad_batches=True))
        predictions = tg.predict_on_generator(databag.iterbatches())
        for i in range(2):
            y_real = ys[i].X
            y_pred = predictions[i]
            assert_true(np.all(np.isclose(y_pred, y_real, atol=0.6)))
コード例 #7
0
    def test_shared_layer(self):
        n_data_points = 20
        n_features = 2

        X = np.random.rand(n_data_points, n_features)
        y1 = np.array([[0, 1] for x in range(n_data_points)])
        X = NumpyDataset(X)
        ys = [NumpyDataset(y1)]

        databag = Databag()

        features = Feature(shape=(None, n_features))
        databag.add_dataset(features, X)

        outputs = []

        label = Label(shape=(None, 2))
        dense1 = Dense(out_channels=2, in_layers=[features])
        dense2 = dense1.shared(in_layers=[features])
        output1 = SoftMax(in_layers=[dense1])
        output2 = SoftMax(in_layers=[dense2])
        smce = SoftMaxCrossEntropy(in_layers=[label, dense1])

        outputs.append(output1)
        outputs.append(output2)
        databag.add_dataset(label, ys[0])

        total_loss = ReduceMean(in_layers=[smce])

        tg = dc.models.TensorGraph(learning_rate=0.01)
        for output in outputs:
            tg.add_output(output)
        tg.set_loss(total_loss)

        tg.fit_generator(
            databag.iterbatches(epochs=1,
                                batch_size=tg.batch_size,
                                pad_batches=True))
        prediction = tg.predict_on_generator(databag.iterbatches())
        assert_true(np.all(np.isclose(prediction[0], prediction[1],
                                      atol=0.01)))
コード例 #8
0
    def test_compute_model_performance_multitask_classifier(self):
        n_data_points = 20
        n_features = 1
        n_tasks = 2
        n_classes = 2

        X = np.ones(shape=(n_data_points // 2, n_features)) * -1
        X1 = np.ones(shape=(n_data_points // 2, n_features))
        X = np.concatenate((X, X1))
        class_1 = np.array([[0.0, 1.0] for x in range(int(n_data_points / 2))])
        class_0 = np.array([[1.0, 0.0] for x in range(int(n_data_points / 2))])
        y1 = np.concatenate((class_0, class_1))
        y2 = np.concatenate((class_1, class_0))
        y = np.stack([y1, y2], axis=1)
        dataset = NumpyDataset(X, y)

        features = Feature(shape=(None, n_features))
        label = Label(shape=(None, n_tasks, n_classes))
        dense = Dense(out_channels=n_tasks * n_classes, in_layers=[features])
        logits = Reshape(shape=(None, n_tasks, n_classes), in_layers=dense)
        output = SoftMax(in_layers=[logits])
        smce = SoftMaxCrossEntropy(in_layers=[label, logits])
        total_loss = ReduceMean(in_layers=smce)

        tg = dc.models.TensorGraph(learning_rate=0.01,
                                   batch_size=n_data_points)
        tg.add_output(output)
        tg.set_loss(total_loss)

        tg.fit(dataset, nb_epoch=1000)
        metric = dc.metrics.Metric(dc.metrics.roc_auc_score,
                                   np.mean,
                                   mode="classification")

        scores = tg.evaluate_generator(tg.default_generator(dataset), [metric],
                                       labels=[label],
                                       per_task_metrics=True)
        scores = list(scores[1].values())
        # Loosening atol to see if tests stop failing sporadically
        assert_true(np.all(np.isclose(scores, [1.0, 1.0], atol=0.50)))
コード例 #9
0
  def __init__(self,
               frag1_num_atoms=70,
               frag2_num_atoms=634,
               complex_num_atoms=701,
               max_num_neighbors=12,
               batch_size=24,
               atom_types=[
                   6, 7., 8., 9., 11., 12., 15., 16., 17., 20., 25., 30., 35.,
                   53., -1.
               ],
               radial=[[
                   1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0,
                   7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0
               ], [0.0, 4.0, 8.0], [0.4]],
               layer_sizes=[32, 32, 16],
               learning_rate=0.001,
               **kwargs):
    """Implements an Atomic Convolution Model.

    Implements the atomic convolutional networks as introduced in
    https://arxiv.org/abs/1703.10603. The atomic convolutional networks
    function as a variant of graph convolutions. The difference is that the
    "graph" here is the nearest neighbors graph in 3D space. The
    AtomicConvModel leverages these connections in 3D space to train models
    that learn to predict energetic state starting from the spatial
    geometry of the model.

    Params
    ------
    frag1_num_atoms: int
      Number of atoms in first fragment
    frag2_num_atoms: int
      Number of atoms in sec
    max_num_neighbors: int
      Maximum number of neighbors possible for an atom. Recall neighbors
      are spatial neighbors.  
    atom_types: list
      List of atoms recognized by model. Atoms are indicated by their
      nuclear numbers.
    radial: list
      TODO: add description
    layer_sizes: list
      TODO: add description
    learning_rate: float
      Learning rate for the model.
    """
    # TODO: Turning off queue for now. Safe to re-activate?
    super(AtomicConvModel, self).__init__(use_queue=False, **kwargs)
    self.complex_num_atoms = complex_num_atoms
    self.frag1_num_atoms = frag1_num_atoms
    self.frag2_num_atoms = frag2_num_atoms
    self.max_num_neighbors = max_num_neighbors
    self.batch_size = batch_size
    self.atom_types = atom_types

    rp = [x for x in itertools.product(*radial)]
    self.frag1_X = Feature(shape=(batch_size, frag1_num_atoms, 3))
    self.frag1_nbrs = Feature(
        shape=(batch_size, frag1_num_atoms, max_num_neighbors))
    self.frag1_nbrs_z = Feature(
        shape=(batch_size, frag1_num_atoms, max_num_neighbors))
    self.frag1_z = Feature(shape=(batch_size, frag1_num_atoms))

    self.frag2_X = Feature(shape=(batch_size, frag2_num_atoms, 3))
    self.frag2_nbrs = Feature(
        shape=(batch_size, frag2_num_atoms, max_num_neighbors))
    self.frag2_nbrs_z = Feature(
        shape=(batch_size, frag2_num_atoms, max_num_neighbors))
    self.frag2_z = Feature(shape=(batch_size, frag2_num_atoms))

    self.complex_X = Feature(shape=(batch_size, complex_num_atoms, 3))
    self.complex_nbrs = Feature(
        shape=(batch_size, complex_num_atoms, max_num_neighbors))
    self.complex_nbrs_z = Feature(
        shape=(batch_size, complex_num_atoms, max_num_neighbors))
    self.complex_z = Feature(shape=(batch_size, complex_num_atoms))

    frag1_conv = AtomicConvolution(
        atom_types=self.atom_types,
        radial_params=rp,
        boxsize=None,
        in_layers=[self.frag1_X, self.frag1_nbrs, self.frag1_nbrs_z])

    frag2_conv = AtomicConvolution(
        atom_types=self.atom_types,
        radial_params=rp,
        boxsize=None,
        in_layers=[self.frag2_X, self.frag2_nbrs, self.frag2_nbrs_z])

    complex_conv = AtomicConvolution(
        atom_types=self.atom_types,
        radial_params=rp,
        boxsize=None,
        in_layers=[self.complex_X, self.complex_nbrs, self.complex_nbrs_z])

    score = AtomicConvScore(
        self.atom_types,
        layer_sizes,
        in_layers=[
            frag1_conv, frag2_conv, complex_conv, self.frag1_z, self.frag2_z,
            self.complex_z
        ])

    self.label = Label(shape=(None, 1))
    loss = ReduceMean(in_layers=L2Loss(in_layers=[score, self.label]))
    self.add_output(score)
    self.set_loss(loss)
コード例 #10
0
ファイル: mnist.py プロジェクト: vcsrc/deepchem
flatten = Flatten()
tg.add_layer(flatten, parents=[conv2d_2])

dense1 = Dense(out_channels=1024, activation_fn=tf.nn.relu)
tg.add_layer(dense1, parents=[flatten])

dense2 = Dense(out_channels=10)
tg.add_layer(dense2, parents=[dense1])

label = Input(shape=(None, 10))
tg.add_label(label)

smce = SoftMaxCrossEntropy()
tg.add_layer(smce, parents=[label, dense2])

loss = ReduceMean()
tg.add_layer(loss, parents=[smce])
tg.set_loss(loss)

output = SoftMax()
tg.add_layer(output, parents=[dense2])
tg.add_output(output)

tg.fit(train, nb_epoch=2)
tg.fit(train, nb_epoch=2)
tg.save()

# tg = TensorGraph.load_from_dir("/tmp/mnist")
from sklearn.metrics import roc_curve, auc
import numpy as np
コード例 #11
0
def atomic_conv_model(frag1_num_atoms=70,
                      frag2_num_atoms=634,
                      complex_num_atoms=701,
                      max_num_neighbors=12,
                      batch_size=24,
                      at=[
                          6, 7., 8., 9., 11., 12., 15., 16., 17., 20., 25.,
                          30., 35., 53., -1.
                      ],
                      radial=[[
                          1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0,
                          6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0,
                          11.5, 12.0
                      ], [0.0, 4.0, 8.0], [0.4]],
                      layer_sizes=[32, 32, 16],
                      learning_rate=0.001):
    rp = [x for x in itertools.product(*radial)]
    frag1_X = Feature(shape=(batch_size, frag1_num_atoms, 3))
    frag1_nbrs = Feature(shape=(batch_size, frag1_num_atoms,
                                max_num_neighbors))
    frag1_nbrs_z = Feature(shape=(batch_size, frag1_num_atoms,
                                  max_num_neighbors))
    frag1_z = Feature(shape=(batch_size, frag1_num_atoms))

    frag2_X = Feature(shape=(batch_size, frag2_num_atoms, 3))
    frag2_nbrs = Feature(shape=(batch_size, frag2_num_atoms,
                                max_num_neighbors))
    frag2_nbrs_z = Feature(shape=(batch_size, frag2_num_atoms,
                                  max_num_neighbors))
    frag2_z = Feature(shape=(batch_size, frag2_num_atoms))

    complex_X = Feature(shape=(batch_size, complex_num_atoms, 3))
    complex_nbrs = Feature(shape=(batch_size, complex_num_atoms,
                                  max_num_neighbors))
    complex_nbrs_z = Feature(shape=(batch_size, complex_num_atoms,
                                    max_num_neighbors))
    complex_z = Feature(shape=(batch_size, complex_num_atoms))

    frag1_conv = AtomicConvolution(
        atom_types=at,
        radial_params=rp,
        boxsize=None,
        in_layers=[frag1_X, frag1_nbrs, frag1_nbrs_z])

    frag2_conv = AtomicConvolution(
        atom_types=at,
        radial_params=rp,
        boxsize=None,
        in_layers=[frag2_X, frag2_nbrs, frag2_nbrs_z])

    complex_conv = AtomicConvolution(
        atom_types=at,
        radial_params=rp,
        boxsize=None,
        in_layers=[complex_X, complex_nbrs, complex_nbrs_z])

    score = AtomicConvScore(at,
                            layer_sizes,
                            in_layers=[
                                frag1_conv, frag2_conv, complex_conv, frag1_z,
                                frag2_z, complex_z
                            ])

    label = Label(shape=(None, 1))
    loss = ReduceMean(in_layers=L2Loss(in_layers=[score, label]))

    def feed_dict_generator(dataset, batch_size, epochs=1, pad_batches=True):
        def replace_atom_types(z):
            def place_holder(i):
                if i in at:
                    return i
                return -1

            return np.array([place_holder(x) for x in z])

        for epoch in range(epochs):
            for ind, (F_b, y_b, w_b, ids_b) in enumerate(
                    dataset.iterbatches(batch_size,
                                        deterministic=True,
                                        pad_batches=pad_batches)):
                N = complex_num_atoms
                N_1 = frag1_num_atoms
                N_2 = frag2_num_atoms
                M = max_num_neighbors

                orig_dict = {}
                batch_size = F_b.shape[0]
                num_features = F_b[0][0].shape[1]
                frag1_X_b = np.zeros((batch_size, N_1, num_features))
                for i in range(batch_size):
                    frag1_X_b[i] = F_b[i][0]
                orig_dict[frag1_X] = frag1_X_b

                frag2_X_b = np.zeros((batch_size, N_2, num_features))
                for i in range(batch_size):
                    frag2_X_b[i] = F_b[i][3]
                orig_dict[frag2_X] = frag2_X_b

                complex_X_b = np.zeros((batch_size, N, num_features))
                for i in range(batch_size):
                    complex_X_b[i] = F_b[i][6]
                orig_dict[complex_X] = complex_X_b

                frag1_Nbrs = np.zeros((batch_size, N_1, M))
                frag1_Z_b = np.zeros((batch_size, N_1))
                for i in range(batch_size):
                    z = replace_atom_types(F_b[i][2])
                    frag1_Z_b[i] = z
                frag1_Nbrs_Z = np.zeros((batch_size, N_1, M))
                for atom in range(N_1):
                    for i in range(batch_size):
                        atom_nbrs = F_b[i][1].get(atom, "")
                        frag1_Nbrs[i,
                                   atom, :len(atom_nbrs)] = np.array(atom_nbrs)
                        for j, atom_j in enumerate(atom_nbrs):
                            frag1_Nbrs_Z[i, atom, j] = frag1_Z_b[i, atom_j]
                orig_dict[frag1_nbrs] = frag1_Nbrs
                orig_dict[frag1_nbrs_z] = frag1_Nbrs_Z
                orig_dict[frag1_z] = frag1_Z_b

                frag2_Nbrs = np.zeros((batch_size, N_2, M))
                frag2_Z_b = np.zeros((batch_size, N_2))
                for i in range(batch_size):
                    z = replace_atom_types(F_b[i][5])
                    frag2_Z_b[i] = z
                frag2_Nbrs_Z = np.zeros((batch_size, N_2, M))
                for atom in range(N_2):
                    for i in range(batch_size):
                        atom_nbrs = F_b[i][4].get(atom, "")
                        frag2_Nbrs[i,
                                   atom, :len(atom_nbrs)] = np.array(atom_nbrs)
                        for j, atom_j in enumerate(atom_nbrs):
                            frag2_Nbrs_Z[i, atom, j] = frag2_Z_b[i, atom_j]
                orig_dict[frag2_nbrs] = frag2_Nbrs
                orig_dict[frag2_nbrs_z] = frag2_Nbrs_Z
                orig_dict[frag2_z] = frag2_Z_b

                complex_Nbrs = np.zeros((batch_size, N, M))
                complex_Z_b = np.zeros((batch_size, N))
                for i in range(batch_size):
                    z = replace_atom_types(F_b[i][8])
                    complex_Z_b[i] = z
                complex_Nbrs_Z = np.zeros((batch_size, N, M))
                for atom in range(N):
                    for i in range(batch_size):
                        atom_nbrs = F_b[i][7].get(atom, "")
                        complex_Nbrs[i, atom, :len(atom_nbrs)] = np.array(
                            atom_nbrs)
                        for j, atom_j in enumerate(atom_nbrs):
                            complex_Nbrs_Z[i, atom, j] = complex_Z_b[i, atom_j]

                orig_dict[complex_nbrs] = complex_Nbrs
                orig_dict[complex_nbrs_z] = complex_Nbrs_Z
                orig_dict[complex_z] = complex_Z_b
                orig_dict[label] = np.reshape(y_b, newshape=(batch_size, 1))
                yield orig_dict

    tg = TensorGraph(batch_size=batch_size,
                     mode=str("regression"),
                     model_dir=str("/tmp/atom_conv"),
                     learning_rate=learning_rate)
    tg.add_output(score)
    tg.set_loss(loss)
    return tg, feed_dict_generator, label
コード例 #12
0
ファイル: graph_models.py プロジェクト: domsooch/dsdc_demo
    def build_graph(self):
        # Build placeholders
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.pair_features = Feature(shape=(None, self.n_pair_feat))
        self.atom_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)

        message_passing = MessagePassing(self.T,
                                         message_fn='enn',
                                         update_fn='gru',
                                         n_hidden=self.n_hidden,
                                         in_layers=[
                                             self.atom_features,
                                             self.pair_features,
                                             self.atom_to_pair
                                         ])

        atom_embeddings = Dense(self.n_hidden, in_layers=[message_passing])

        mol_embeddings = SetGather(
            self.M,
            self.batch_size,
            n_hidden=self.n_hidden,
            in_layers=[atom_embeddings, self.atom_split])

        dense1 = Dense(out_channels=2 * self.n_hidden,
                       activation_fn=tf.nn.relu,
                       in_layers=[mol_embeddings])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=dense1,
                                       out_channels=n_tasks * n_classes)
                             ])
            logits = TrimGraphOutput([logits, weights])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)])
            output = TrimGraphOutput([output, weights])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(
                    shape=(None, n_tasks),
                    in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)])
                log_var = TrimGraphOutput([log_var, weights])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
コード例 #13
0
ファイル: graph_models.py プロジェクト: domsooch/dsdc_demo
    def build_graph(self):
        """
    Building graph structures:
    """
        self.atom_features = Feature(shape=(None, self.number_atom_features))
        self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)

        self.deg_adjs = []
        for i in range(0, 10 + 1):
            deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
            self.deg_adjs.append(deg_adj)
        in_layer = self.atom_features
        for layer_size, dropout in zip(self.graph_conv_layers, self.dropout):
            gc1_in = [in_layer, self.degree_slice, self.membership
                      ] + self.deg_adjs
            gc1 = GraphConv(layer_size,
                            activation_fn=tf.nn.relu,
                            in_layers=gc1_in)
            batch_norm1 = BatchNorm(in_layers=[gc1])
            if dropout > 0.0:
                batch_norm1 = Dropout(dropout, in_layers=batch_norm1)
            gp_in = [batch_norm1, self.degree_slice, self.membership
                     ] + self.deg_adjs
            in_layer = GraphPool(in_layers=gp_in)
        dense = Dense(out_channels=self.dense_layer_size,
                      activation_fn=tf.nn.relu,
                      in_layers=[in_layer])
        batch_norm3 = BatchNorm(in_layers=[dense])
        if self.dropout[-1] > 0.0:
            batch_norm3 = Dropout(self.dropout[-1], in_layers=batch_norm3)
        readout = GraphGather(
            batch_size=self.batch_size,
            activation_fn=tf.nn.tanh,
            in_layers=[batch_norm3, self.degree_slice, self.membership] +
            self.deg_adjs)

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=readout,
                                       out_channels=n_tasks * n_classes)
                             ])
            logits = TrimGraphOutput([logits, weights])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
            output = TrimGraphOutput([output, weights])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(
                    shape=(None, n_tasks),
                    in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
                log_var = TrimGraphOutput([log_var, weights])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
コード例 #14
0
ファイル: graph_models.py プロジェクト: domsooch/dsdc_demo
    def build_graph(self):
        """Building graph structures:
                Features => DAGLayer => DAGGather => Classification or Regression
                """
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.parents = Feature(shape=(None, self.max_atoms, self.max_atoms),
                               dtype=tf.int32)
        self.calculation_orders = Feature(shape=(None, self.max_atoms),
                                          dtype=tf.int32)
        self.calculation_masks = Feature(shape=(None, self.max_atoms),
                                         dtype=tf.bool)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)
        self.n_atoms = Feature(shape=(), dtype=tf.int32)
        dag_layer1 = DAGLayer(n_graph_feat=self.n_graph_feat,
                              n_atom_feat=self.n_atom_feat,
                              max_atoms=self.max_atoms,
                              layer_sizes=self.layer_sizes,
                              dropout=self.dropout,
                              batch_size=self.batch_size,
                              in_layers=[
                                  self.atom_features, self.parents,
                                  self.calculation_orders,
                                  self.calculation_masks, self.n_atoms
                              ])
        dag_gather = DAGGather(n_graph_feat=self.n_graph_feat,
                               n_outputs=self.n_outputs,
                               max_atoms=self.max_atoms,
                               layer_sizes=self.layer_sizes_gather,
                               dropout=self.dropout,
                               in_layers=[dag_layer1, self.membership])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=dag_gather,
                                       out_channels=n_tasks * n_classes)
                             ])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=dag_gather, out_channels=n_tasks)])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(shape=(None, n_tasks),
                                  in_layers=[
                                      Dense(in_layers=dag_gather,
                                            out_channels=n_tasks)
                                  ])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
コード例 #15
0
ファイル: fcnet.py プロジェクト: zhshLee/deepchem
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 uncertainty=False,
                 **kwargs):
        """Create a MultitaskRegressor.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    bias_init_consts: list or float
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
      The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    uncertainty: bool
      if True, include extra outputs and loss terms to enable the uncertainty
      in outputs to be predicted
    """
        super(MultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * (n_layers + 1)
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * (n_layers + 1)
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers
        if uncertainty:
            if any(d == 0.0 for d in dropouts):
                raise ValueError(
                    'Dropout must be included in every layer to predict uncertainty'
                )

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer
        self.neural_fingerprint = prev_layer

        # Compute the loss function for each label.

        output = Reshape(shape=(-1, n_tasks, 1),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks,
                                   weights_initializer=TFWrapper(
                                       tf.truncated_normal_initializer,
                                       stddev=weight_init_stddevs[-1]),
                                   biases_initializer=TFWrapper(
                                       tf.constant_initializer,
                                       value=bias_init_consts[-1]))
                         ])
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, 1))
        weights = Weights(shape=(None, n_tasks, 1))
        if uncertainty:
            log_var = Reshape(
                shape=(-1, n_tasks, 1),
                in_layers=[
                    Dense(in_layers=[prev_layer],
                          out_channels=n_tasks,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_init_stddevs[-1]),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=0.0))
                ])
            var = Exp(log_var)
            self.add_variance(var)
            diff = labels - output
            weighted_loss = weights * (diff * diff / var + log_var)
            weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1, 2]))
        else:
            weighted_loss = ReduceSum(
                L2Loss(in_layers=[labels, output, weights]))
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
コード例 #16
0
    def __init__(self,
                 img_rows=512,
                 img_cols=512,
                 filters=[64, 128, 256, 512, 1024],
                 **kwargs):
        super(UNet, self).__init__(use_queue=False, **kwargs)
        self.img_cols = img_cols
        self.img_rows = img_rows
        self.filters = filters

        input = Feature(shape=(None, self.img_rows, self.img_cols, 3))
        labels = Label(shape=(None, self.img_rows * self.img_cols))

        conv1 = Conv2D(num_outputs=self.filters[0],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[input])
        conv1 = Conv2D(num_outputs=self.filters[0],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[conv1])
        pool1 = MaxPool2D(ksize=[1, 2, 2, 1], in_layers=[conv1])

        conv2 = Conv2D(num_outputs=self.filters[1],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[pool1])
        conv2 = Conv2D(num_outputs=self.filters[1],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[conv2])
        pool2 = MaxPool2D(ksize=[1, 2, 2, 1], in_layers=[conv2])

        conv3 = Conv2D(num_outputs=self.filters[2],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[pool2])
        conv3 = Conv2D(num_outputs=self.filters[2],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[conv3])
        pool3 = MaxPool2D(ksize=[1, 2, 2, 1], in_layers=[conv3])

        conv4 = Conv2D(num_outputs=self.filters[3],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[pool3])
        conv4 = Conv2D(num_outputs=self.filters[3],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[conv4])
        pool4 = MaxPool2D(ksize=[1, 2, 2, 1], in_layers=[conv4])

        conv5 = Conv2D(num_outputs=self.filters[4],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[pool4])
        conv5 = Conv2D(num_outputs=self.filters[4],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[conv5])

        up6 = Conv2DTranspose(num_outputs=self.filters[3],
                              kernel_size=2,
                              stride=2,
                              in_layers=[conv5])
        concat6 = Concat(in_layers=[conv4, up6], axis=3)
        conv6 = Conv2D(num_outputs=self.filters[3],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[concat6])

        conv6 = Conv2D(num_outputs=self.filters[3],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[conv6])

        up7 = Conv2DTranspose(num_outputs=self.filters[2],
                              kernel_size=2,
                              stride=2,
                              in_layers=[conv6])
        concat7 = Concat(in_layers=[conv3, up7], axis=3)
        conv7 = Conv2D(num_outputs=self.filters[2],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[concat7])
        conv7 = Conv2D(num_outputs=self.filters[2],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[conv7])

        up8 = Conv2DTranspose(num_outputs=self.filters[1],
                              kernel_size=2,
                              stride=2,
                              in_layers=[conv7])
        concat8 = Concat(in_layers=[conv2, up8], axis=3)
        conv8 = Conv2D(num_outputs=self.filters[1],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[concat8])
        conv8 = Conv2D(num_outputs=self.filters[1],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[conv8])

        up9 = Conv2DTranspose(num_outputs=self.filters[0],
                              kernel_size=2,
                              stride=2,
                              in_layers=[conv8])
        concat9 = Concat(in_layers=[conv1, up9], axis=3)
        conv9 = Conv2D(num_outputs=self.filters[0],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[concat9])
        conv9 = Conv2D(num_outputs=self.filters[0],
                       kernel_size=3,
                       activation='relu',
                       padding='same',
                       in_layers=[conv9])

        conv10 = Conv2D(num_outputs=1,
                        kernel_size=1,
                        activation='sigmoid',
                        in_layers=[conv9])

        loss = SoftMaxCrossEntropy(in_layers=[labels, conv10])
        loss = ReduceMean(in_layers=[loss])
        self.set_loss(loss)
        self.add_output(conv10)
コード例 #17
0
                   activation_fn=tf.nn.tanh,
                   in_layers=[dense1, degree_slice, membership] + deg_adjs)

# in this model, multilabel (15 precursors) shall be classified
# using the trained featuret vector
cost15 = []
for ts in range(ntask):
    label_t = label15[ts]
    classification_t = Dense(out_channels=2, in_layers=[out1])
    softmax_t = SoftMax(in_layers=[classification_t])
    tg.add_output(softmax_t)
    cost_t = SoftMaxCrossEntropy(in_layers=[label_t, classification_t])
    cost15.append(cost_t)

# The loss function is the average of the 15 crossentropy
loss = ReduceMean(in_layers=cost15)
tg.set_loss(loss)


def data_generator(dataset, n_epoch=1, predict=False):
    for ee in range(n_epoch):
        if not predict:
            print('Starting epoch %i' % ee)
        for ind, (X_b, y_b, w_b, ids_b) in enumerate(
                dataset.iterbatches(n_batch,
                                    pad_batches=True,
                                    deterministic=True)):
            fd = {}
            for ts, label_t in enumerate(label15):
                fd[label_t] = to_one_hot(y_b[:, ts])
            mol = ConvMol.agglomerate_mols(X_b)