コード例 #1
0
ファイル: scscore.py プロジェクト: zwtian666/deepchem
  def build_graph(self):
    """
    Building graph structures:
    """
    self.m1_features = Feature(shape=(None, self.n_features))
    self.m2_features = Feature(shape=(None, self.n_features))
    prev_layer1 = self.m1_features
    prev_layer2 = self.m2_features
    for layer_size in self.layer_sizes:
      prev_layer1 = Dense(
          out_channels=layer_size,
          in_layers=[prev_layer1],
          activation_fn=tf.nn.relu)
      prev_layer2 = prev_layer1.shared([prev_layer2])
      if self.dropout > 0.0:
        prev_layer1 = Dropout(self.dropout, in_layers=prev_layer1)
        prev_layer2 = Dropout(self.dropout, in_layers=prev_layer2)

    readout_m1 = Dense(
        out_channels=1, in_layers=[prev_layer1], activation_fn=None)
    readout_m2 = readout_m1.shared([prev_layer2])
    self.add_output(Sigmoid(readout_m1) * 4 + 1)
    self.add_output(Sigmoid(readout_m2) * 4 + 1)

    self.difference = readout_m1 - readout_m2
    label = Label(shape=(None, 1))
    loss = HingeLoss(in_layers=[label, self.difference])
    self.my_task_weights = Weights(shape=(None, 1))
    loss = WeightedError(in_layers=[loss, self.my_task_weights])
    self.set_loss(loss)
コード例 #2
0
    def build_graph(self):
        """Constructs the graph architecture of IRV as described in:

       https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750043/
    """
        self.mol_features = Feature(shape=(None, self.n_features))
        self._labels = Label(shape=(None, self.n_tasks))
        self._weights = Weights(shape=(None, self.n_tasks))
        predictions = IRVLayer(self.n_tasks,
                               self.K,
                               in_layers=[self.mol_features])
        costs = []
        outputs = []
        for task in range(self.n_tasks):
            task_output = Slice(task, 1, in_layers=[predictions])
            sigmoid = Sigmoid(in_layers=[task_output])
            outputs.append(sigmoid)

            label = Slice(task, axis=1, in_layers=[self._labels])
            cost = SigmoidCrossEntropy(in_layers=[label, task_output])
            costs.append(cost)
        all_cost = Concat(in_layers=costs, axis=1)
        loss = WeightedError(in_layers=[all_cost, self._weights]) + \
            IRVRegularize(predictions, self.penalty, in_layers=[predictions])
        self.set_loss(loss)
        outputs = Stack(axis=1, in_layers=outputs)
        outputs = Concat(axis=2, in_layers=[1 - outputs, outputs])
        self.add_output(outputs)
コード例 #3
0
def test_Sigmoid_pickle():
  tg = TensorGraph()
  feature = Feature(shape=(tg.batch_size, 1))
  layer = Sigmoid(in_layers=feature)
  tg.add_output(layer)
  tg.set_loss(layer)
  tg.build()
  tg.save()
コード例 #4
0
 def test_sigmoid(self):
     """Test that Sigmoid can be invoked."""
     batch_size = 10
     n_features = 5
     in_tensor = np.random.rand(batch_size, n_features)
     with self.session() as sess:
         in_tensor = tf.convert_to_tensor(in_tensor, dtype=tf.float32)
         out_tensor = Sigmoid()(in_tensor)
         out_tensor = out_tensor.eval()
         assert out_tensor.shape == (batch_size, n_features)