コード例 #1
0
def generate_dataset(x1, x2, y):

    #load data
    qm9_tasks, datasets, transformers = load_qm9()
    train_dataset, valid_dataset, test_dataset = datasets

    print("x1 = ", qm9_tasks[x1 - 1])
    print("x2 = ", qm9_tasks[x2 - 1])
    print("y = ", qm9_tasks[y - 1])

    #extrct the 'y'values
    Y = test_dataset.y
    YT = Y.T

    X1 = YT[x1 - 1]
    X2 = YT[x2 - 1]
    Y_a = YT[y - 1]

    x1 = X1.tolist()
    x2 = X2.tolist()
    y_l = Y_a.tolist()
    l = Y_a.shape

    n = np.random.uniform(0, l,
                          1).astype(np.int)  #set the number of noise added
    ni = np.random.uniform(0, l, n)  #n random values
    an = len(ni)

    #add noise to n numbers of y
    for i in range(an):
        mu = 0
        sigma = (x1[i] + x2[i]) / 2
        noise = np.random.normal(mu, np.abs(sigma), n)
        g = noise.tolist()
        y_l[i] += g[i]

    #save to_csv:
    dataframe = pd.DataFrame({'x1': X1, 'x2': X2, 'y': y_l})
    dataframe.to_csv("y_gen_data.csv", index=False, sep=',')
    gen_data = pd.read_csv('y_gen_data.csv')
コード例 #2
0
"""
Script that trains Tensorflow multitask models on QM9 dataset.
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals

import os
import deepchem as dc
import numpy as np
from deepchem.molnet import load_qm9

np.random.seed(123)
qm9_tasks, datasets, transformers = load_qm9()
train_dataset, valid_dataset, test_dataset = datasets
fit_transformers = [dc.trans.CoulombFitTransformer(train_dataset)]
regression_metric = [
    dc.metrics.Metric(dc.metrics.mean_absolute_error, mode="regression"),
    dc.metrics.Metric(dc.metrics.pearson_r2_score, mode="regression")
]
model = dc.models.MultiTaskFitTransformRegressor(
    n_tasks=len(qm9_tasks),
    n_features=[29, 29],
    learning_rate=0.001,
    momentum=.8,
    batch_size=32,
    weight_init_stddevs=[1 / np.sqrt(400), 1 / np.sqrt(100), 1 / np.sqrt(100)],
    bias_init_consts=[0., 0., 0.],
    layer_sizes=[400, 100, 100],
    dropouts=[0.01, 0.01, 0.01],
    fit_transformers=fit_transformers,