def after_eval_step(self, *args, **kwargs): self.report_dict = filter_dict( flatten_dict( self._trainer._meter_interface.tracking_status( group_name=self._val_groupname))) self.tqdm_indicator.update() self.tqdm_indicator.set_postfix(self.report_dict)
def _eval_report_dict(self): return filter_dict( { "val_loss": self.METERINTERFACE["val_loss"].summary()["mean"], "val_acc": self.METERINTERFACE["val_acc"].summary()["acc"], } )
def _training_report_dict(self): return filter_dict( { "tra_loss": self.METERINTERFACE["train_loss"].summary()["mean"], "tra_acc": self.METERINTERFACE["train_acc"].summary()["acc"], } )
def _training_report_dict(self): report_dict = super()._training_report_dict report_dict.update({ "marginal": self.METERINTERFACE["marginal"].summary()["mean"], "centropy": self.METERINTERFACE["centropy"].summary()["mean"], }) return filter_dict(report_dict)
def _training_report_dict(self): report_dict = super()._training_report_dict report_dict.update( { "unl_acc": self.METERINTERFACE["unl_acc"].summary()["acc"], "uda_reg": self.METERINTERFACE["uda_reg"].summary()["mean"], "marginal": self.METERINTERFACE["marginal"].summary()["mean"], } ) return filter_dict(report_dict)