cal = Calendars.calendar("USNYSE") trades = db.t("LearnIris", "StockTrades").where("Date=`2017-08-25`") trades = trades.where("cal.isBusinessTime(ExchangeTimestamp)") # CATEGORY PLOTTING - SINGLE t1c = db.t("LearnDeephaven", "StockTrades")\ .where("Date >`2017-08-20`", "USym = `MSFT`")\ .view("Date", "USym", "Last", "Size", "ExchangeTimestamp") totalSharesByUSym = t1c.view("Date", "USym", "SharesTraded=Size").sumBy("Date", "USym") categoryPlot = Plot.catPlot("MSFT", totalSharesByUSym.where("USym = `MSFT`"), "Date", "SharesTraded")\ .chartTitle("Shares Traded")\ .show() # CATEGORY PLOTTING - MULTIPLE t2c = db.t("LearnDeephaven", "StockTrades")\ .where("Date >`2017-08-20`", "USym in `AAPL`, `MSFT`")\ .view("Date", "USym", "Last", "Size", "ExchangeTimestamp") totalSharesByUSym2 = t2c.view("Date", "USym", "SharesTraded=Size").sumBy("Date", "USym") categoryPlot2 = Plot.catPlot("MSFT", totalSharesByUSym2.where("USym = `MSFT`"), "Date", "SharesTraded")\ .catPlot("AAPL", totalSharesByUSym2.where("USym = `AAPL`"), "Date", "SharesTraded")\ .chartTitle("Shares Traded")\ .show()
t = tt.emptyTable(50)\ .update("X = i + 5", "XLow = X -1", "XHigh = X + 1", "Y = Math.random() * 5", "YLow = Y - 1", "YHigh = Y + 1", "USym = i % 2 == 0 ? `AAPL` : `MSFT`") p = plt.plot("S1", t, "X", "Y").lineColor("black").show() p2 = plt.plot("S1", t, "X", "Y").plotStyle("bar").gradientVisible(True).show() p3 = plt.plot( "S1", t, "X", "Y").plotStyle("scatter").pointColor("black").pointSize(2).show() p4 = plt.plot("S1", t, "X", "Y").plotStyle("area").seriesColor("red").show() p4 = plt.plot3d("S1", t, "X", "X", "Y").show() pBy = plt.plotBy("S1", t, "X", "Y", "USym").show() pBy = plt.plot3dBy("S1", t, "X", "X", "Y", "USym").show() cp = plt.catPlot("S1", t, "X", "Y").lineColor("black").show() cp2 = plt.catPlot("S1", t, "X", "Y").plotStyle("bar").gradientVisible(True).show() cp3 = plt.catPlot( "S1", t, "X", "Y").plotStyle("scatter").pointColor("black").pointSize(2).show() cp4 = plt.catPlot("S1", t, "X", "Y").plotStyle("area").seriesColor("red").show() cp = plt.catPlot3d("S1", t, "X", "X", "Y").show() cpBy = plt.catPlotBy("S1", t, "X", "Y", "USym").show() cpBy = plt.catPlot3dBy("S1", t, "X", "X", "Y", "USym").show() pp = plt.piePlot("S1", t, "X", "Y")
summaries = db.t("LearnDeephaven", "EODTrades").where("ImportDate=`2017-11-01`") # XY Series timePlot = Plot.plot("Microsoft", trades.where("Sym=`MSFT`"), "ExchangeTimestamp", "Last")\ .show() multiSeries = Plot.plot("Microsoft", trades.where("Sym=`MSFT`"), "ExchangeTimestamp", "Last")\ .twinX()\ .plot("Apple", trades.where("Sym=`AAPL`"), "ExchangeTimestamp", "Last")\ .chartTitle("Price Over Time")\ .show() # Category categoryPlot = Plot.catPlot("Shares Traded", totalShares, "Sym", "SharesTraded")\ .chartTitle("Total Shares")\ .show() # Pie pieChart = Plot.piePlot("Shares Traded", totalShares, "Sym", "SharesTraded")\ .chartTitle("Total Shares")\ .show() # Histogram histogram = Plot.histPlot("MSFT", trades.where("Sym=`MSFT`"), "Last", 3)\ .chartTitle("Price Intervals")\ .show() # Category Histogram catHist = Plot.catHistPlot("Number of Trades", trades, "Sym")\ .chartTitle("Trades per Symbol")\