コード例 #1
0
ファイル: search_space.py プロジェクト: xiaming9880/deephyper
def create_search_space(
    input_shape=(10,), output_shape=(7,), num_layers=10, *args, **kwargs
):

    arch = AutoKSearchSpace(input_shape, output_shape, regression=True)
    source = prev_input = arch.input_nodes[0]

    # look over skip connections within a range of the 3 previous nodes
    anchor_points = collections.deque([source], maxlen=3)

    for _ in range(num_layers):
        vnode = VariableNode()
        add_dense_to_(vnode)

        arch.connect(prev_input, vnode)

        # * Cell output
        cell_output = vnode

        cmerge = ConstantNode()
        cmerge.set_op(AddByProjecting(arch, [cell_output], activation="relu"))

        for anchor in anchor_points:
            skipco = VariableNode()
            skipco.add_op(Tensor([]))
            skipco.add_op(Connect(arch, anchor))
            arch.connect(skipco, cmerge)

        # ! for next iter
        prev_input = cmerge
        anchor_points.append(prev_input)

    return arch
コード例 #2
0
    def test_create_more_nodes(self):
        from deephyper.nas.space import AutoKSearchSpace
        from deephyper.nas.space.node import VariableNode
        from deephyper.nas.space.op.op1d import Dense

        struct = AutoKSearchSpace((5, ), (1, ), regression=True)

        vnode1 = VariableNode()
        struct.connect(struct.input_nodes[0], vnode1)

        vnode1.add_op(Dense(10))

        vnode2 = VariableNode()
        vnode2.add_op(Dense(10))

        struct.connect(vnode1, vnode2)

        struct.set_ops([0, 0])

        falias = "test_auto_keras_search_spaceure"
        struct.draw_graphviz(f"{falias}.dot")

        model = struct.create_model()
        from tensorflow.keras.utils import plot_model

        plot_model(model, to_file=f"{falias}.png", show_shapes=True)
コード例 #3
0
ファイル: feed_forward.py プロジェクト: bigwater/deepspace
    def build(
        self,
        input_shape,
        output_shape,
        regression=True,
        num_units=(1, 11),
        num_layers=10,
        **kwargs
    ):
        """
        Args:
            input_shape (tuple, optional): True shape of inputs (no batch size dimension). Defaults to (2,).
            output_shape (tuple, optional): True shape of outputs (no batch size dimension).. Defaults to (1,).
            num_layers (int, optional): Maximum number of layers to have. Defaults to 10.
            num_units (tuple, optional): Range of number of units such as range(start, end, step_size). Defaults to (1, 11).
            regression (bool, optional): A boolean defining if the model is a regressor or a classifier. Defaults to True.

        Returns:
            AutoKSearchSpace: A search space object based on tf.keras implementations.
        """
        ss = AutoKSearchSpace(input_shape, output_shape, regression=regression)

        prev_node = ss.input_nodes[0]

        for _ in range(num_layers):
            vnode = VariableNode()
            vnode.add_op(Identity())
            for i in range(*num_units):
                vnode.add_op(Dense(i, tf.nn.relu))

            ss.connect(prev_node, vnode)
            prev_node = vnode

        return ss
コード例 #4
0
def create_search_space(
    input_shape=(32, 32, 3),
    output_shape=(10, ),
    num_filters=8,
    num_blocks=4,
    normal_cells=2,
    reduction_cells=1,
    repetitions=3,
    *args,
    **kwargs,
):

    ss = AutoKSearchSpace(input_shape, output_shape, regression=False)
    source = prev_input = ss.input_nodes[0]

    # look over skip connections within a range of the 3 previous nodes
    hidden_states = collections.deque([source, source], maxlen=2)

    for ri in range(repetitions):
        for nci in range(normal_cells):
            # generate a normal cell
            cout = generate_cell(
                ss,
                hidden_states,
                num_blocks,
                strides=1,
                mime=ri + nci > 0,
                num_filters=num_filters,
            )
            hidden_states.append(cout)

        if ri < repetitions - 1:  # we don't want the last cell to be a reduction cell
            for rci in range(reduction_cells):
                # generate a reduction cell
                cout = generate_cell(
                    ss,
                    hidden_states,
                    num_blocks,
                    strides=2,
                    mime=ri + rci > 0,
                    num_filters=num_filters,
                )
                hidden_states.append(cout)

    # out_node = ConstantNode(op=Dense(100, activation=tf.nn.relu))
    out_dense = VariableNode()
    out_dense.add_op(Identity())
    for units in [10, 20, 50, 100, 200, 500, 1000]:
        out_dense.add_op(Dense(units, activation=tf.nn.relu))
    ss.connect(cout, out_dense)

    out_dropout = VariableNode()
    out_dropout.add_op(Identity())
    for drop_rate in [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8]:
        out_dropout.add_op(Dropout(rate=drop_rate))
    ss.connect(out_dense, out_dropout)

    return ss
コード例 #5
0
def test_create_search_space(input_shape=(2, ), output_shape=(1, ), **kwargs):
    struct = AutoKSearchSpace(input_shape, output_shape, regression=True)

    vnode1 = VariableNode()
    for _ in range(1, 11):
        vnode1.add_op(Operation(layer=tf.keras.layers.Dense(10)))

    struct.connect(struct.input_nodes[0], vnode1)

    struct.set_ops([0])
    struct.create_model()
コード例 #6
0
ファイル: dense_skipco.py プロジェクト: bigwater/deepspace
    def build(
        self,
        input_shape,
        output_shape,
        regression=True,
        num_layers=10,
        dropout=0.0,
        **kwargs,
    ):
        ss = AutoKSearchSpace(input_shape, output_shape, regression=regression)
        source = prev_input = ss.input_nodes[0]

        # look over skip connections within a range of the 3 previous nodes
        anchor_points = collections.deque([source], maxlen=3)

        for _ in range(num_layers):
            vnode = VariableNode()
            self.add_dense_to_(vnode)

            ss.connect(prev_input, vnode)

            # * Cell output
            cell_output = vnode

            cmerge = ConstantNode()
            cmerge.set_op(AddByProjecting(ss, [cell_output],
                                          activation="relu"))

            for anchor in anchor_points:
                skipco = VariableNode()
                skipco.add_op(Zero())
                skipco.add_op(Connect(ss, anchor))
                ss.connect(skipco, cmerge)

            prev_input = cmerge

            # ! for next iter
            anchor_points.append(prev_input)

        if dropout >= 0.0:
            dropout_node = ConstantNode(op=Dropout(rate=dropout))
            ss.connect(prev_input, dropout_node)

        return ss
コード例 #7
0
    def build(self, input_shape, output_shape, regression=True, **kwargs):
        ss = AutoKSearchSpace(input_shape, output_shape, regression=regression)

        if type(input_shape) is list:
            vnodes = []
            for i in range(len(input_shape)):
                vn = self.gen_vnode()
                vnodes.append(vn)
                ss.connect(ss.input_nodes[i], vn)

            cn = ConstantNode()
            cn.set_op(Concatenate(ss, vnodes))

            vn = self.gen_vnode()
            ss.connect(cn, vn)

        else:
            vnode1 = self.gen_vnode()
            ss.connect(ss.input_nodes[0], vnode1)

        return ss
コード例 #8
0
class MultiInputsDenseSkipCoFactory(SpaceFactory):
    def build(
        self,
        input_shape,
        output_shape,
        regression=True,
        num_layers=10,
        **kwargs,
    ):
        self.ss = AutoKSearchSpace(input_shape,
                                   output_shape,
                                   regression=regression)

        sub_graphs_outputs = []

        for input_ in self.ss.input_nodes:
            output_sub_graph = self.build_sub_graph(input_)
            sub_graphs_outputs.append(output_sub_graph)

        cmerge = ConstantNode()
        cmerge.set_op(Concatenate(self.ss, sub_graphs_outputs))

        output_sub_graph = self.build_sub_graph(cmerge)

        return self.ss

    def build_sub_graph(self, input_, num_layers=3):
        source = prev_input = input_

        # look over skip connections within a range of the 3 previous nodes
        anchor_points = collections.deque([source], maxlen=3)

        for _ in range(num_layers):
            vnode = VariableNode()
            self.add_dense_to_(vnode)

            self.ss.connect(prev_input, vnode)

            # * Cell output
            cell_output = vnode

            cmerge = ConstantNode()
            cmerge.set_op(
                AddByProjecting(self.ss, [cell_output], activation="relu"))

            for anchor in anchor_points:
                skipco = VariableNode()
                skipco.add_op(Zero())
                skipco.add_op(Connect(self.ss, anchor))
                self.ss.connect(skipco, cmerge)

            prev_input = cmerge

            # ! for next iter
            anchor_points.append(prev_input)

        return prev_input

    def add_dense_to_(self, node):
        node.add_op(
            Identity())  # we do not want to create a layer in this case

        activations = [
            None, tf.nn.swish, tf.nn.relu, tf.nn.tanh, tf.nn.sigmoid
        ]
        for units in range(50, 2000, 25):
            for activation in activations:
                node.add_op(Dense(units=units, activation=activation))
コード例 #9
0
class MultiInputsDenseSkipCoFactory(SpaceFactory):
    def build(
        self,
        input_shape,
        output_shape,
        regression=True,
        num_layers=10,
        **kwargs,
    ):
        self.ss = AutoKSearchSpace(input_shape, output_shape, regression=regression)
        self.shapes_to_vnodes = {}

        sub_graphs_outputs = []

        for input_ in self.ss.input_nodes:
            output_sub_graph = self.build_sub_graph(input_)
            sub_graphs_outputs.append(output_sub_graph)

        cmerge = ConstantNode()
        cmerge.set_op(Concatenate(self.ss, sub_graphs_outputs))

        output_sub_graph = self.build_sub_graph(cmerge)

        return self.ss

    def build_sub_graph(self, input_, num_layers=3):
        source = prev_input = input_

        mirror = False
        is_input = False
        if type(source) is ConstantNode:
            if type(source._op) is Tensor:
                if "input_" in source._op.tensor.name:
                    is_input = True
                    input_name = source._op.tensor.name
                    input_shape = tuple(source._op.tensor.shape[1:])
                    if self.shapes_to_vnodes.get(input_shape) is None:
                        self.shapes_to_vnodes[input_shape] = []
                    else:
                        mirror = True
                        memory = self.shapes_to_vnodes[input_shape][::-1]


        # look over skip connections within a range of the 3 previous nodes
        anchor_points = collections.deque([source], maxlen=3)
        for layer_i in range(num_layers):
            if not(mirror):
                vnode = VariableNode()
                self.add_dense_to_(vnode)
                if is_input:
                    self.shapes_to_vnodes[input_shape].append(vnode)
            else:
                vnode = MirrorNode(memory.pop())

            self.ss.connect(prev_input, vnode)

            # * Cell output
            prev_node = vnode
            if layer_i == num_layers-1:
                return prev_node

            cmerge = ConstantNode()
            cmerge.set_op(Concatenate(self.ss, [prev_node]))

            for anchor in anchor_points:

                if not(mirror):
                    skipco = VariableNode()
                    if is_input:
                        self.shapes_to_vnodes[input_shape].append(skipco)
                else:
                    skipco = MimeNode(memory.pop())

                skipco.add_op(Zero())
                skipco.add_op(Connect(self.ss, anchor))

                self.ss.connect(skipco, cmerge)

            prev_input = cmerge

            # ! for next iter
            anchor_points.append(prev_input)

        return prev_input

    def add_dense_to_(self, node):
        node.add_op(Identity())  # we do not want to create a layer in this case

        activations = [None, tf.nn.swish, tf.nn.relu, tf.nn.tanh, tf.nn.sigmoid]
        for units in range(50, 2000, 25):
            for activation in activations:
                node.add_op(Dense(units=units, activation=activation))