def test_trainer_regressor_train_valid_with_multiple_ndarray_inputs(): from deephyper.benchmark.nas.linearRegMultiInputs.problem import Problem config = Problem.space config["hyperparameters"]["num_epochs"] = 2 # load functions load_data = util.load_attr_from(config["load_data"]["func"]) config["load_data"]["func"] = load_data config["create_search_space"]["func"] = util.load_attr_from( config["create_search_space"]["func"]) # Loading data kwargs = config["load_data"].get("kwargs") (tX, ty), (vX, vy) = load_data() if kwargs is None else load_data(**kwargs) print("[PARAM] Data loaded") # Set data shape # interested in shape of data not in length input_shape = [np.shape(itX)[1:] for itX in tX] output_shape = list(np.shape(ty))[1:] config["data"] = { "train_X": tX, "train_Y": ty, "valid_X": vX, "valid_Y": vy } search_space = config["create_search_space"]["func"]( input_shape, output_shape, **config["create_search_space"]["kwargs"]) arch_seq = [random() for i in range(search_space.num_nodes)] print("arch_seq: ", arch_seq) search_space.set_ops(arch_seq) search_space.draw_graphviz("trainer_keras_regressor_test.dot") if config.get("preprocessing") is not None: preprocessing = util.load_attr_from(config["preprocessing"]["func"]) config["preprocessing"]["func"] = preprocessing else: config["preprocessing"] = None model = search_space.create_model() plot_model(model, to_file="trainer_keras_regressor_test.png", show_shapes=True) trainer = TrainerTrainValid(config=config, model=model) res = trainer.train() assert res != sys.float_info.max
def test_trainer_regressor_train_valid_with_multiple_generator_inputs(): from deephyper.nas.run.util import ( load_config, setup_data, ) from deephyper.benchmark.nas.linearRegMultiInputsGen.problem import Problem config = Problem.space load_config(config) input_shape, output_shape = setup_data(config) create_search_space = config["create_search_space"]["func"] cs_kwargs = config["create_search_space"].get("kwargs") if cs_kwargs is None: search_space = create_search_space(input_shape, output_shape, seed=42) else: search_space = create_search_space(input_shape, output_shape, seed=42, **cs_kwargs) arch_seq = [random() for i in range(search_space.num_nodes)] config["arch_seq"] = arch_seq search_space.set_ops(arch_seq) config["hyperparameters"]["num_epochs"] = 2 search_space.set_ops(arch_seq) search_space.draw_graphviz("trainer_keras_regressor_test.dot") model = search_space.create_model() plot_model(model, to_file="trainer_keras_regressor_test.png", show_shapes=True) trainer = TrainerTrainValid(config=config, model=model) res = trainer.train() assert res != sys.float_info.max
def train(config): seed = config["seed"] repeat = config["post_train"]["repeat"] if seed is not None: np.random.seed(seed) # must be between (0, 2**32-1) seeds = [np.random.randint(0, 2**32 - 1) for _ in range(repeat)] for rep in range(repeat): tf.keras.backend.clear_session() default_callbacks_config = copy.deepcopy(CB_CONFIG) if seed is not None: np.random.seed(seeds[rep]) tf.random.set_seed(seeds[rep]) logger.info(f"Training replica {rep+1}") # Pre-settings: particularly import for BeholderCB to work sess = tf.Session() K.set_session(sess) # override hyperparameters with post_train hyperparameters keys = filter(lambda k: k in config["hyperparameters"], config["post_train"].keys()) for k in keys: config["hyperparameters"][k] = config["post_train"][k] load_config(config) input_shape, output_shape = setup_data(config) search_space = setup_search_space(config, input_shape, output_shape, seed=seed) search_space.draw_graphviz(f'model_{config["id"]}.dot') logger.info("Model operations set.") model_created = False try: model = search_space.create_model() model_created = True except: model_created = False logger.info("Error: Model creation failed...") logger.info(traceback.format_exc()) if model_created: # model.load_weights(default_cfg['model_checkpoint']['filepath']) # Setup callbacks callbacks = [] callbacks_config = config["post_train"].get("callbacks") if callbacks_config is not None: for cb_name, cb_conf in callbacks_config.items(): if cb_name in default_callbacks_config: default_callbacks_config[cb_name].update(cb_conf) if cb_name == "ModelCheckpoint": default_callbacks_config[cb_name][ "filepath"] = f'best_model_id{config["id"]}_r{rep}.h5' elif cb_name == "TensorBoard": if default_callbacks_config[cb_name]["beholder"]: callbacks.append( BeholderCB( logdir=default_callbacks_config[ cb_name]["log_dir"], sess=sess, )) default_callbacks_config[cb_name].pop("beholder") Callback = getattr(keras.callbacks, cb_name) callbacks.append( Callback(**default_callbacks_config[cb_name])) logger.info( f"Adding new callback {type(Callback).__name__} with config: {default_callbacks_config[cb_name]}!" ) else: logger.error( f"'{cb_name}' is not an accepted callback!") trainer = TrainerTrainValid(config=config, model=model) trainer.callbacks.extend(callbacks) json_fname = f'post_training_hist_{config["id"]}.json' # to log the number of trainable parameters before running training trainer.init_history() try: with open(json_fname, "r") as f: fhist = json.load(f) except FileNotFoundError: fhist = trainer.train_history for k, v in fhist.items(): fhist[k] = [v] with open(json_fname, "w") as f: json.dump(fhist, f, cls=Encoder) hist = trainer.train(with_pred=False, last_only=False) # Timing of prediction for validation dataset t = time() # ! TIMING - START trainer.predict(dataset="valid") hist["val_predict_time"] = time() - t # ! TIMING - END for k, v in hist.items(): fhist[k] = fhist.get(k, []) fhist[k].append(v) with open(json_fname, "w") as f: json.dump(fhist, f, cls=Encoder) return model
def run(config): physical_devices = tf.config.list_physical_devices("GPU") try: for i in range(len(physical_devices)): tf.config.experimental.set_memory_growth(physical_devices[i], True) except: # Invalid device or cannot modify virtual devices once initialized. pass distributed_strategy = tf.distribute.MirroredStrategy() n_replicas = distributed_strategy.num_replicas_in_sync seed = config["seed"] if seed is not None: np.random.seed(seed) tf.random.set_seed(seed) load_config(config) # Scale batch size and learning rate according to the number of ranks if config[a.hyperparameters].get("lsr_batch_size"): batch_size = config[a.hyperparameters][a.batch_size] * n_replicas else: batch_size = config[a.hyperparameters][a.batch_size] if config[a.hyperparameters].get("lsr_learning_rate"): learning_rate = config[a.hyperparameters][a.learning_rate] * n_replicas else: learning_rate = config[a.hyperparameters][a.learning_rate] logger.info( f"Scaled: 'batch_size' from {config[a.hyperparameters][a.batch_size]} to {batch_size} " ) logger.info( f"Scaled: 'learning_rate' from {config[a.hyperparameters][a.learning_rate]} to {learning_rate} " ) config[a.hyperparameters][a.batch_size] = batch_size config[a.hyperparameters][a.learning_rate] = learning_rate input_shape, output_shape = setup_data(config) search_space = setup_search_space(config, input_shape, output_shape, seed=seed) model_created = False with distributed_strategy.scope(): try: model = search_space.create_model() model_created = True except: logger.info("Error: Model creation failed...") logger.info(traceback.format_exc()) else: # Setup callbacks callbacks = [] cb_requires_valid = False # Callbacks requires validation data callbacks_config = config["hyperparameters"].get("callbacks") if callbacks_config is not None: for cb_name, cb_conf in callbacks_config.items(): if cb_name in default_callbacks_config: default_callbacks_config[cb_name].update(cb_conf) # Special dynamic parameters for callbacks if cb_name == "ModelCheckpoint": default_callbacks_config[cb_name][ "filepath"] = f'best_model_{config["id"]}.h5' # replace patience hyperparameter if "patience" in default_callbacks_config[cb_name]: patience = config["hyperparameters"].get( f"patience_{cb_name}") if patience is not None: default_callbacks_config[cb_name][ "patience"] = patience # Import and create corresponding callback Callback = import_callback(cb_name) callbacks.append( Callback(**default_callbacks_config[cb_name])) if cb_name in ["EarlyStopping"]: cb_requires_valid = "val" in cb_conf[ "monitor"].split("_") else: logger.error( f"'{cb_name}' is not an accepted callback!") trainer = TrainerTrainValid(config=config, model=model) trainer.callbacks.extend(callbacks) last_only, with_pred = preproc_trainer(config) last_only = last_only and not cb_requires_valid if model_created: history = trainer.train(with_pred=with_pred, last_only=last_only) # save history save_history(config.get("log_dir", None), history, config) result = compute_objective(config["objective"], history) else: # penalising actions if model cannot be created result = -1 if result < -10 or np.isnan(result): result = -10 return result
def run(config: dict) -> float: # Threading configuration if os.environ.get("OMP_NUM_THREADS", None) is not None: logger.debug(f"OMP_NUM_THREADS is {os.environ.get('OMP_NUM_THREADS')}") num_intra = int(os.environ.get("OMP_NUM_THREADS")) tf.config.threading.set_intra_op_parallelism_threads(num_intra) tf.config.threading.set_inter_op_parallelism_threads(2) seed = config["seed"] if seed is not None: np.random.seed(seed) tf.random.set_seed(seed) load_config(config) input_shape, output_shape = setup_data(config) search_space = setup_search_space(config, input_shape, output_shape, seed=seed) model_created = False try: model = search_space.create_model() model_created = True except: logger.info("Error: Model creation failed...") logger.info(traceback.format_exc()) if model_created: # Setup callbacks callbacks = [] cb_requires_valid = False # Callbacks requires validation data callbacks_config = config["hyperparameters"].get("callbacks") if callbacks_config is not None: for cb_name, cb_conf in callbacks_config.items(): if cb_name in default_callbacks_config: default_callbacks_config[cb_name].update(cb_conf) # Special dynamic parameters for callbacks if cb_name == "ModelCheckpoint": default_callbacks_config[cb_name][ "filepath"] = f'best_model_{config["id"]}.h5' # replace patience hyperparameter if "patience" in default_callbacks_config[cb_name]: patience = config["hyperparameters"].get( f"patience_{cb_name}") if patience is not None: default_callbacks_config[cb_name][ "patience"] = patience # Import and create corresponding callback Callback = import_callback(cb_name) callbacks.append( Callback(**default_callbacks_config[cb_name])) if cb_name in ["EarlyStopping"]: cb_requires_valid = "val" in cb_conf["monitor"].split( "_") else: logger.error(f"'{cb_name}' is not an accepted callback!") trainer = TrainerTrainValid(config=config, model=model) trainer.callbacks.extend(callbacks) last_only, with_pred = preproc_trainer(config) last_only = last_only and not cb_requires_valid history = trainer.train(with_pred=with_pred, last_only=last_only) # save history save_history(config.get("log_dir", None), history, config) result = compute_objective(config["objective"], history) else: # penalising actions if model cannot be created result = -1 if result < -10 or np.isnan(result): result = -10 return result