def label_frames(config, multiple=False): """ Manually label/annotate the extracted frames. Update the list of body parts you want to localize in the config.yaml file first. Parameter ---------- config : string String containing the full path of the config file in the project. multiple: bool, optional If this is set to True, a user can label multiple individuals. The default is ``False``; if provided it must be either ``True`` or ``False``. Example -------- To label multiple individuals >>> deeplabcut.label_frames('/analysis/project/reaching-task/config.yaml',multiple=True) -------- """ startpath = os.getcwd() wd = Path(config).resolve().parents[0] os.chdir(str(wd)) if multiple == False: from deeplabcut.generate_training_dataset import labeling_toolbox # labeling_toolbox.show(config,Screens,scale_w,scale_h, winHack, img_scale) labeling_toolbox.show(config) else: from deeplabcut.generate_training_dataset import multiple_individual_labeling_toolbox multiple_individual_labeling_toolbox.show(config) os.chdir(startpath)
def label_frames(config, ma=False): """ Manually label/annotate the extracted frames. Update the list of body parts you want to localize in the config.yaml file first. Parameter ---------- config : string String containing the full path of the config file in the project. Example -------- >>> deeplabcut.label_frames('/analysis/project/reaching-task/config.yaml') -------- """ startpath = os.getcwd() wd = Path(config).resolve().parents[0] os.chdir(str(wd)) if ma == False: from deeplabcut.generate_training_dataset import labeling_toolbox # labeling_toolbox.show(config,Screens,scale_w,scale_h, winHack, img_scale) labeling_toolbox.show(config) else: from deeplabcut.generate_training_dataset import multiple_individual_labeling_toolbox multiple_individual_labeling_toolbox.show(config) os.chdir(startpath)