def create_training_dataset(config, num_shuffles=1, Shuffles=None, windows2linux=False): """ Creates a training dataset. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL]Use the function 'add_new_video' at any stage of the project to add more videos to the project. Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. Example -------- >>> deeplabcut.create_training_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_training_dataset('C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ from skimage import io import scipy.io as sio import deeplabcut import subprocess # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg['scorer'] project_path = cfg['project_path'] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder( cfg) #Path concatenation OS platform independent auxiliaryfunctions.attempttomakefolder(Path( os.path.join(project_path, str(trainingsetfolder))), recursive=True) Data = merge_annotateddatasets( cfg, project_path, Path(os.path.join(project_path, trainingsetfolder)), windows2linux) Data = Data[scorer] #extract labeled data #set model type. we will allow more in the future. if cfg['resnet'] == 50: net_type = 'resnet_' + str(cfg['resnet']) resnet_path = str( Path(deeplabcut.__file__).parents[0] / 'pose_estimation_tensorflow/models/pretrained/resnet_v1_50.ckpt') elif cfg['resnet'] == 101: net_type = 'resnet_' + str(cfg['resnet']) resnet_path = str( Path(deeplabcut.__file__).parents[0] / 'pose_estimation_tensorflow/models/pretrained/resnet_v1_101.ckpt') else: print( "Currently only ResNet 50 or 101 supported, please change 'resnet' entry in config.yaml!" ) num_shuffles = -1 #thus the loop below is empty... if not Path(resnet_path).is_file(): """ Downloads the ImageNet pretrained weights for ResNet. """ start = os.getcwd() os.chdir(str(Path(resnet_path).parents[0])) print("Downloading the pretrained model (ResNets)....") subprocess.call("download.sh", shell=True) os.chdir(start) if Shuffles == None: Shuffles = range(1, num_shuffles + 1, 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] bodyparts = cfg['bodyparts'] TrainingFraction = cfg['TrainingFraction'] for shuffle in Shuffles: # Creating shuffles starting from 1 for trainFraction in TrainingFraction: trainIndexes, testIndexes = SplitTrials(range(len(Data.index)), trainFraction) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### # Make training file! data = [] for jj in trainIndexes: H = {} # load image to get dimensions: filename = Data.index[jj] im = io.imread(os.path.join(cfg['project_path'], filename)) H['image'] = filename if np.ndim(im) == 3: H['size'] = np.array( [np.shape(im)[2], np.shape(im)[0], np.shape(im)[1]]) else: # print "Grayscale!" H['size'] = np.array([1, np.shape(im)[0], np.shape(im)[1]]) indexjoints = 0 joints = np.zeros((len(bodyparts), 3)) * np.nan for bpindex, bodypart in enumerate(bodyparts): if Data[bodypart]['x'][jj] < np.shape( im)[1] and Data[bodypart]['y'][jj] < np.shape( im)[0]: #are labels in image? joints[indexjoints, 0] = int(bpindex) joints[indexjoints, 1] = Data[bodypart]['x'][jj] joints[indexjoints, 2] = Data[bodypart]['y'][jj] indexjoints += 1 joints = joints[np.where(np.prod( np.isfinite(joints), 1))[0], :] # drop NaN, i.e. lines for missing body parts assert (np.prod(np.array(joints[:, 2]) < np.shape(im)[0]) ) # y coordinate within image? assert (np.prod(np.array(joints[:, 1]) < np.shape(im)[1]) ) # x coordinate within image? H['joints'] = np.array(joints, dtype=int) if np.size(joints) > 0: #exclude images without labels data.append(H) if len(trainIndexes) > 0: datafilename, metadatafilename = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving metadata (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndexes, testIndexes, trainFraction) ################################################################################ # Saving data file (convert to training file for deeper cut (*.mat)) ################################################################################ DTYPE = [('image', 'O'), ('size', 'O'), ('joints', 'O')] MatlabData = np.array( [(np.array([data[item]['image']], dtype='U'), np.array([data[item]['size']]), boxitintoacell(data[item]['joints'])) for item in range(len(data))], dtype=DTYPE) sio.savemat(os.path.join(project_path, datafilename), {'dataset': MatlabData}) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder( Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + '/' + '/train') auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + '/' + '/test') path_train_config = str( os.path.join(cfg['project_path'], Path(modelfoldername), 'train', 'pose_cfg.yaml')) path_test_config = str( os.path.join(cfg['project_path'], Path(modelfoldername), 'test', 'pose_cfg.yaml')) #str(cfg['proj_path']+'/'+Path(modelfoldername) / 'test' / 'pose_cfg.yaml') items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(bodyparts), "all_joints": [[i] for i in range(len(bodyparts))], "all_joints_names": [str(bpt) for bpt in bodyparts], "init_weights": resnet_path, "project_path": str(cfg['project_path']), "net_type": net_type } defaultconfigfile = str( Path(deeplabcut.__file__).parents[0] / 'pose_cfg.yaml') trainingdata = MakeTrain_pose_yaml(items2change, path_train_config, defaultconfigfile) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", 'init_weights', 'global_scale', 'location_refinement', 'locref_stdev' ] MakeTest_pose_yaml(trainingdata, keys2save, path_test_config) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" )
def create_multianimaltraining_dataset( config, num_shuffles=1, Shuffles=None, windows2linux=False, net_type=None, numdigits=2, paf_graph=None, ): """ Creates a training dataset for multi-animal datasets. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL] Use the function 'add_new_video' at any stage of the project to add more videos to the project. Imporant differences to standard: - stores coordinates with numdigits as many digits - creates Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. net_type: string Type of networks. Currently resnet_50, resnet_101, and resnet_152, efficientnet-b0, efficientnet-b1, efficientnet-b2, efficientnet-b3, efficientnet-b4, efficientnet-b5, and efficientnet-b6 as well as dlcrnet_ms5 are supported (not the MobileNets!). See Lauer et al. 2021 https://www.biorxiv.org/content/10.1101/2021.04.30.442096v1 numdigits: int, optional paf_graph: list of lists, optional (default=None) If not None, overwrite the default complete graph. This is useful for advanced users who already know a good graph, or simply want to use a specific one. Note that, in that case, the data-driven selection procedure upon model evaluation will be skipped. Example -------- >>> deeplabcut.create_multianimaltraining_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_multianimaltraining_dataset(r'C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg["scorer"] project_path = cfg["project_path"] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) full_training_path = Path(project_path, trainingsetfolder) auxiliaryfunctions.attempttomakefolder(full_training_path, recursive=True) Data = merge_annotateddatasets(cfg, full_training_path, windows2linux) if Data is None: return Data = Data[scorer] def strip_cropped_image_name(path): # utility function to split different crops from same image into either train or test! head, filename = os.path.split(path) if cfg["croppedtraining"]: filename = filename.split("c")[0] return os.path.join(head, filename) img_names = Data.index.map(strip_cropped_image_name).unique() if net_type is None: # loading & linking pretrained models net_type = cfg.get("default_net_type", "dlcrnet_ms5") elif not any(net in net_type for net in ("resnet", "eff", "dlc")): raise ValueError(f"Unsupported network {net_type}.") multi_stage = False if net_type == "dlcrnet_ms5": net_type = "resnet_50" multi_stage = True dataset_type = "multi-animal-imgaug" ( individuals, uniquebodyparts, multianimalbodyparts, ) = auxfun_multianimal.extractindividualsandbodyparts(cfg) if paf_graph is None: # Automatically form a complete PAF graph partaffinityfield_graph = [ list(edge) for edge in combinations(range(len(multianimalbodyparts)), 2) ] else: # Ignore possible connections between 'multi' and 'unique' body parts; # one can never be too careful... to_ignore = auxfun_multianimal.filter_unwanted_paf_connections( cfg, paf_graph) partaffinityfield_graph = [ edge for i, edge in enumerate(paf_graph) if i not in to_ignore ] auxfun_multianimal.validate_paf_graph(cfg, partaffinityfield_graph) print("Utilizing the following graph:", partaffinityfield_graph) partaffinityfield_predict = True # Loading the encoder (if necessary downloading from TF) dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") model_path, num_shuffles = auxfun_models.Check4weights( net_type, Path(dlcparent_path), num_shuffles) if Shuffles is None: Shuffles = range(1, num_shuffles + 1, 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] TrainingFraction = cfg["TrainingFraction"] for shuffle in Shuffles: # Creating shuffles starting from 1 for trainFraction in TrainingFraction: train_inds_temp, test_inds_temp = SplitTrials( range(len(img_names)), trainFraction) # Map back to the original indices. temp = [ re.escape(name) for i, name in enumerate(img_names) if i in test_inds_temp ] mask = Data.index.str.contains("|".join(temp)) testIndices = np.flatnonzero(mask) trainIndices = np.flatnonzero(~mask) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### print( "Creating training data for: Shuffle:", shuffle, "TrainFraction: ", trainFraction, ) # Make training file! data = format_multianimal_training_data( Data, trainIndices, cfg["project_path"], numdigits, ) if len(trainIndices) > 0: ( datafilename, metadatafilename, ) = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving metadata and data file (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndices, testIndices, trainFraction, ) datafilename = datafilename.split(".mat")[0] + ".pickle" import pickle with open(os.path.join(project_path, datafilename), "wb") as f: # Pickle the 'labeled-data' dictionary using the highest protocol available. pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder( Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername / "train")) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername / "test")) path_train_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "train", "pose_cfg.yaml", )) path_test_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "pose_cfg.yaml", )) path_inference_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "inference_cfg.yaml", )) jointnames = [str(bpt) for bpt in multianimalbodyparts] jointnames.extend([str(bpt) for bpt in uniquebodyparts]) items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(multianimalbodyparts) + len(uniquebodyparts), # cfg["uniquebodyparts"]), "all_joints": [[i] for i in range( len(multianimalbodyparts) + len(uniquebodyparts)) ], # cfg["uniquebodyparts"]))], "all_joints_names": jointnames, "init_weights": model_path, "project_path": str(cfg["project_path"]), "net_type": net_type, "multi_stage": multi_stage, "pairwise_loss_weight": 0.1, "pafwidth": 20, "partaffinityfield_graph": partaffinityfield_graph, "partaffinityfield_predict": partaffinityfield_predict, "weigh_only_present_joints": False, "num_limbs": len(partaffinityfield_graph), "dataset_type": dataset_type, "optimizer": "adam", "batch_size": 8, "multi_step": [[1e-4, 7500], [5 * 1e-5, 12000], [1e-5, 200000]], "save_iters": 10000, "display_iters": 500, "num_idchannel": len(cfg["individuals"]) if cfg.get("identity", False) else 0, } trainingdata = MakeTrain_pose_yaml(items2change, path_train_config, defaultconfigfile) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", "multi_stage", "init_weights", "global_scale", "location_refinement", "locref_stdev", "dataset_type", "partaffinityfield_predict", "pairwise_predict", "partaffinityfield_graph", "num_limbs", "dataset_type", "num_idchannel", ] MakeTest_pose_yaml( trainingdata, keys2save, path_test_config, nmsradius=5.0, minconfidence=0.01, ) # setting important def. values for inference # Setting inference cfg file: defaultinference_configfile = os.path.join( dlcparent_path, "inference_cfg.yaml") items2change = { "minimalnumberofconnections": int(len(cfg["multianimalbodyparts"]) / 2), "topktoretain": len(cfg["individuals"]) + 1 * (len(cfg["uniquebodyparts"]) > 0), "withid": cfg.get("identity", False), } MakeInference_yaml(items2change, path_inference_config, defaultinference_configfile) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" ) else: pass
def evaluate_multianimal_full( config, Shuffles=[1], trainingsetindex=0, plotting=None, show_errors=True, comparisonbodyparts="all", gputouse=None, modelprefix="", c_engine=False, ): from deeplabcut.pose_estimation_tensorflow.nnet import predict from deeplabcut.pose_estimation_tensorflow.nnet import ( predict_multianimal as predictma, ) from deeplabcut.utils import auxiliaryfunctions, auxfun_multianimal import tensorflow as tf if "TF_CUDNN_USE_AUTOTUNE" in os.environ: del os.environ[ "TF_CUDNN_USE_AUTOTUNE"] # was potentially set during training tf.reset_default_graph() os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # if gputouse is not None: # gpu selectinon os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse) start_path = os.getcwd() ################################################## # Load data... ################################################## cfg = auxiliaryfunctions.read_config(config) if trainingsetindex == "all": TrainingFractions = cfg["TrainingFraction"] else: TrainingFractions = [cfg["TrainingFraction"][trainingsetindex]] # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", ), "df_with_missing", ) # Handle data previously annotated on a different platform sep = "/" if "/" in Data.index[0] else "\\" if sep != os.path.sep: Data.index = Data.index.str.replace(sep, os.path.sep) # Get list of body parts to evaluate network for comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser( cfg, comparisonbodyparts) all_bpts = np.asarray( len(cfg["individuals"]) * cfg["multianimalbodyparts"] + cfg["uniquebodyparts"]) colors = visualization.get_cmap(len(comparisonbodyparts), name=cfg["colormap"]) # Make folder for evaluation auxiliaryfunctions.attempttomakefolder( str(cfg["project_path"] + "/evaluation-results/")) for shuffle in Shuffles: for trainFraction in TrainingFractions: ################################################## # Load and setup CNN part detector ################################################## datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" # Load meta data ( data, trainIndices, testIndices, trainFraction, ) = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction)) # TODO: IMPLEMENT for different batch sizes? dlc_cfg["batch_size"] = 1 # due to differently sized images!!! joints = dlc_cfg["all_joints_names"] # Create folder structure to store results. evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetEvaluationFolder( trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True) # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml' # Check which snapshots are available and sort them by # iterations Snapshots = np.array([ fn.split(".")[0] for fn in os.listdir(os.path.join(str(modelfolder), "train")) if "index" in fn ]) if len(Snapshots) == 0: print( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction)) else: increasing_indices = np.argsort( [int(m.split("-")[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if cfg["snapshotindex"] == -1: snapindices = [-1] elif cfg["snapshotindex"] == "all": snapindices = range(len(Snapshots)) elif cfg["snapshotindex"] < len(Snapshots): snapindices = [cfg["snapshotindex"]] else: print( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) final_result = [] ################################################## # Compute predictions over images ################################################## for snapindex in snapindices: dlc_cfg["init_weights"] = os.path.join( str(modelfolder), "train", Snapshots[snapindex] ) # setting weights to corresponding snapshot. trainingsiterations = ( dlc_cfg["init_weights"].split(os.sep)[-1] ).split( "-" )[-1] # read how many training siterations that corresponds to. # name for deeplabcut net (based on its parameters) DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName( cfg, shuffle, trainFraction, trainingsiterations, modelprefix=modelprefix, ) print( "Running ", DLCscorer, " with # of trainingiterations:", trainingsiterations, ) ( notanalyzed, resultsfilename, DLCscorer, ) = auxiliaryfunctions.CheckifNotEvaluated( str(evaluationfolder), DLCscorer, DLCscorerlegacy, Snapshots[snapindex], ) if os.path.isfile( resultsfilename.split(".h5")[0] + "_full.pickle"): print("Model already evaluated.", resultsfilename) else: if plotting: foldername = os.path.join( str(evaluationfolder), "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex], ) auxiliaryfunctions.attempttomakefolder(foldername) # print(dlc_cfg) # Specifying state of model (snapshot / training state) sess, inputs, outputs = predict.setup_pose_prediction( dlc_cfg) PredicteData = {} dist = np.full((len(Data), len(all_bpts)), np.nan) conf = np.full_like(dist, np.nan) distnorm = np.full(len(Data), np.nan) print("Analyzing data...") for imageindex, imagename in tqdm(enumerate( Data.index)): image_path = os.path.join(cfg["project_path"], imagename) image = io.imread(image_path) frame = img_as_ubyte(skimage.color.gray2rgb(image)) GT = Data.iloc[imageindex] df = GT.unstack("coords").reindex( joints, level='bodyparts') # Evaluate PAF edge lengths to calibrate `distnorm` temp = GT.unstack("bodyparts")[joints] xy = temp.values.reshape( (-1, 2, temp.shape[1])).swapaxes(1, 2) edges = xy[:, dlc_cfg["partaffinityfield_graph"]] lengths = np.sum( (edges[:, :, 0] - edges[:, :, 1])**2, axis=2) distnorm[imageindex] = np.nanmax(lengths) # FIXME Is having an empty array vs nan really that necessary?! groundtruthidentity = list( df.index.get_level_values( "individuals").to_numpy().reshape((-1, 1))) groundtruthcoordinates = list( df.values[:, np.newaxis]) for i, coords in enumerate(groundtruthcoordinates): if np.isnan(coords).any(): groundtruthcoordinates[i] = np.empty( (0, 2), dtype=float) groundtruthidentity[i] = np.array( [], dtype=str) PredicteData[imagename] = {} PredicteData[imagename]["index"] = imageindex pred = predictma.get_detectionswithcostsandGT( frame, groundtruthcoordinates, dlc_cfg, sess, inputs, outputs, outall=False, nms_radius=dlc_cfg.nmsradius, det_min_score=dlc_cfg.minconfidence, c_engine=c_engine, ) PredicteData[imagename]["prediction"] = pred PredicteData[imagename]["groundtruth"] = [ groundtruthidentity, groundtruthcoordinates, GT, ] coords_pred = pred["coordinates"][0] probs_pred = pred["confidence"] for bpt, xy_gt in df.groupby(level="bodyparts"): inds_gt = np.flatnonzero( np.all(~np.isnan(xy_gt), axis=1)) n_joint = joints.index(bpt) xy = coords_pred[n_joint] if inds_gt.size and xy.size: # Pick the predictions closest to ground truth, # rather than the ones the model has most confident in d = cdist(xy_gt.iloc[inds_gt], xy) rows, cols = linear_sum_assignment(d) min_dists = d[rows, cols] inds = np.flatnonzero(all_bpts == bpt) sl = imageindex, inds[inds_gt[rows]] dist[sl] = min_dists conf[sl] = probs_pred[n_joint][ cols].squeeze() if plotting: fig = visualization.make_multianimal_labeled_image( frame, groundtruthcoordinates, coords_pred, probs_pred, colors, cfg["dotsize"], cfg["alphavalue"], cfg["pcutoff"], ) visualization.save_labeled_frame( fig, image_path, foldername, imageindex in trainIndices, ) sess.close() # closes the current tf session # Compute all distance statistics df_dist = pd.DataFrame(dist, columns=df.index) df_conf = pd.DataFrame(conf, columns=df.index) df_joint = pd.concat([df_dist, df_conf], keys=["rmse", "conf"], names=["metrics"], axis=1) df_joint = df_joint.reorder_levels(list( np.roll(df_joint.columns.names, -1)), axis=1) df_joint.sort_index(axis=1, level=["individuals", "bodyparts"], ascending=[True, True], inplace=True) write_path = os.path.join( evaluationfolder, f"dist_{trainingsiterations}.csv") df_joint.to_csv(write_path) # Calculate overall prediction error error = df_joint.xs("rmse", level="metrics", axis=1) mask = df_joint.xs("conf", level="metrics", axis=1) >= cfg["pcutoff"] error_masked = error[mask] error_train = np.nanmean(error.iloc[trainIndices]) error_train_cut = np.nanmean( error_masked.iloc[trainIndices]) error_test = np.nanmean(error.iloc[testIndices]) error_test_cut = np.nanmean( error_masked.iloc[testIndices]) results = [ trainingsiterations, int(100 * trainFraction), shuffle, np.round(error_train, 2), np.round(error_test, 2), cfg["pcutoff"], np.round(error_train_cut, 2), np.round(error_test_cut, 2), ] final_result.append(results) # For OKS/PCK, compute the standard deviation error across all frames sd = df_dist.groupby("bodyparts", axis=1).mean().std(axis=0) sd["distnorm"] = np.sqrt(np.nanmax(distnorm)) sd.to_csv(write_path.replace("dist.csv", "sd.csv")) if show_errors: string = "Results for {} training iterations: {}, shuffle {}:\n" \ "Train error: {} pixels. Test error: {} pixels.\n" \ "With pcutoff of {}:\n" \ "Train error: {} pixels. Test error: {} pixels." print(string.format(*results)) print("##########################################") print( "Average Euclidean distance to GT per individual (in pixels)" ) print( error_masked.groupby( 'individuals', axis=1).mean().mean().to_string()) print( "Average Euclidean distance to GT per bodypart (in pixels)" ) print( error_masked.groupby( 'bodyparts', axis=1).mean().mean().to_string()) PredicteData["metadata"] = { "nms radius": dlc_cfg.nmsradius, "minimal confidence": dlc_cfg.minconfidence, "PAFgraph": dlc_cfg.partaffinityfield_graph, "all_joints": [[i] for i in range(len(dlc_cfg.all_joints))], "all_joints_names": [ dlc_cfg.all_joints_names[i] for i in range(len(dlc_cfg.all_joints)) ], "stride": dlc_cfg.get("stride", 8), } print( "Done and results stored for snapshot: ", Snapshots[snapindex], ) dictionary = { "Scorer": DLCscorer, "DLC-model-config file": dlc_cfg, "trainIndices": trainIndices, "testIndices": testIndices, "trainFraction": trainFraction, } metadata = {"data": dictionary} auxfun_multianimal.SaveFullMultiAnimalData( PredicteData, metadata, resultsfilename) tf.reset_default_graph() if len(final_result ) > 0: # Only append if results were calculated make_results_file(final_result, evaluationfolder, DLCscorer) # returning to intial folder os.chdir(str(start_path))
def extract_maps( config, shuffle=0, trainingsetindex=0, gputouse=None, rescale=False, Indices=None, modelprefix="", ): """ Extracts the scoremap, locref, partaffinityfields (if available). Returns a dictionary indexed by: trainingsetfraction, snapshotindex, and imageindex for those keys, each item contains: (image,scmap,locref,paf,bpt names,partaffinity graph, imagename, True/False if this image was in trainingset) ---------- config : string Full path of the config.yaml file as a string. shuffle: integer integers specifying shuffle index of the training dataset. The default is 0. trainingsetindex: int, optional Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This variable can also be set to "all". rescale: bool, default False Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the original size! Examples -------- If you want to extract the data for image 0 and 103 (of the training set) for model trained with shuffle 0. >>> deeplabcut.extract_maps(configfile,0,Indices=[0,103]) """ from deeplabcut.utils.auxfun_videos import imread, imresize from deeplabcut.pose_estimation_tensorflow.nnet import predict from deeplabcut.pose_estimation_tensorflow.nnet import ( predict_multianimal as predictma, ) from deeplabcut.pose_estimation_tensorflow.config import load_config from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input from deeplabcut.utils import auxiliaryfunctions from tqdm import tqdm import tensorflow as tf vers = (tf.__version__).split(".") if int(vers[0]) == 1 and int(vers[1]) > 12: TF = tf.compat.v1 else: TF = tf import pandas as pd from pathlib import Path import numpy as np TF.reset_default_graph() os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # # tf.logging.set_verbosity(tf.logging.WARN) start_path = os.getcwd() # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) if gputouse is not None: # gpu selectinon os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse) if trainingsetindex == "all": TrainingFractions = cfg["TrainingFraction"] else: if trainingsetindex < len( cfg["TrainingFraction"]) and trainingsetindex >= 0: TrainingFractions = [ cfg["TrainingFraction"][int(trainingsetindex)] ] else: raise Exception( "Please check the trainingsetindex! ", trainingsetindex, " should be an integer from 0 .. ", int(len(cfg["TrainingFraction"]) - 1), ) # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", ), "df_with_missing", ) # Make folder for evaluation auxiliaryfunctions.attempttomakefolder( str(cfg["project_path"] + "/evaluation-results/")) Maps = {} for trainFraction in TrainingFractions: Maps[trainFraction] = {} ################################################## # Load and setup CNN part detector ################################################## datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" # Load meta data ( data, trainIndices, testIndices, trainFraction, ) = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction)) # change batch size, if it was edited during analysis! dlc_cfg["batch_size"] = 1 # in case this was edited for analysis. # Create folder structure to store results. evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetEvaluationFolder( trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True) # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml' # Check which snapshots are available and sort them by # iterations Snapshots = np.array([ fn.split(".")[0] for fn in os.listdir(os.path.join(str(modelfolder), "train")) if "index" in fn ]) try: # check if any where found? Snapshots[0] except IndexError: raise FileNotFoundError( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction)) increasing_indices = np.argsort( [int(m.split("-")[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if cfg["snapshotindex"] == -1: snapindices = [-1] elif cfg["snapshotindex"] == "all": snapindices = range(len(Snapshots)) elif cfg["snapshotindex"] < len(Snapshots): snapindices = [cfg["snapshotindex"]] else: print( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) ########################### RESCALING (to global scale) scale = dlc_cfg["global_scale"] if rescale else 1 Data *= scale bptnames = [ dlc_cfg["all_joints_names"][i] for i in range(len(dlc_cfg["all_joints"])) ] for snapindex in snapindices: dlc_cfg["init_weights"] = os.path.join( str(modelfolder), "train", Snapshots[snapindex] ) # setting weights to corresponding snapshot. trainingsiterations = ( dlc_cfg["init_weights"].split(os.sep)[-1] ).split("-")[ -1] # read how many training siterations that corresponds to. # Name for deeplabcut net (based on its parameters) # DLCscorer,DLCscorerlegacy = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations) # notanalyzed, resultsfilename, DLCscorer=auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder),DLCscorer,DLCscorerlegacy,Snapshots[snapindex]) # print("Extracting maps for ", DLCscorer, " with # of trainingiterations:", trainingsiterations) # if notanalyzed: #this only applies to ask if h5 exists... # Specifying state of model (snapshot / training state) sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg) Numimages = len(Data.index) PredicteData = np.zeros( (Numimages, 3 * len(dlc_cfg["all_joints_names"]))) print("Analyzing data...") if Indices is None: Indices = enumerate(Data.index) else: Ind = [Data.index[j] for j in Indices] Indices = enumerate(Ind) DATA = {} for imageindex, imagename in tqdm(Indices): image = imread(os.path.join(cfg["project_path"], imagename), mode="RGB") if scale != 1: image = imresize(image, scale) image_batch = data_to_input(image) # Compute prediction with the CNN outputs_np = sess.run(outputs, feed_dict={inputs: image_batch}) if cfg.get("multianimalproject", False): scmap, locref, paf = predictma.extract_cnn_output( outputs_np, dlc_cfg) pagraph = dlc_cfg["partaffinityfield_graph"] else: scmap, locref = predict.extract_cnn_output( outputs_np, dlc_cfg) paf = None pagraph = [] if imageindex in testIndices: trainingfram = False else: trainingfram = True DATA[imageindex] = [ image, scmap, locref, paf, bptnames, pagraph, imagename, trainingfram, ] Maps[trainFraction][Snapshots[snapindex]] = DATA os.chdir(str(start_path)) return Maps
print("Checking labels...") deeplabcut.check_labels(config_path, draw_skeleton=False) print("Labels checked.") print("Creating train dataset...") deeplabcut.create_multianimaltraining_dataset( config_path, net_type=NET, crop_size=(200, 200) ) print("Train dataset created.") # Check the training image paths are correctly stored as arrays of strings trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) datafile, _ = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, 0.8, 1, cfg, ) datafile = datafile.split(".mat")[0] + ".pickle" with open(os.path.join(cfg["project_path"], datafile), "rb") as f: pickledata = pickle.load(f) num_images = len(pickledata) assert all(len(pickledata[i]["image"]) == 3 for i in range(num_images)) print("Editing pose config...") model_folder = auxiliaryfunctions.GetModelFolder( TRAIN_SIZE, 1, cfg, cfg["project_path"] ) pose_config_path = os.path.join(model_folder, "train", "pose_cfg.yaml") edits = { "global_scale": 0.5,
def create_training_dataset( config, num_shuffles=1, Shuffles=None, windows2linux=False, userfeedback=False, trainIndices=None, testIndices=None, net_type=None, augmenter_type=None, posecfg_template=None, ): """Creates a training dataset. Labels from all the extracted frames are merged into a single .h5 file. Only the videos included in the config file are used to create this dataset. Parameters ---------- config : string Full path of the ``config.yaml`` file as a string. num_shuffles : int, optional, default=1 Number of shuffles of training dataset to create, i.e. ``[1,2,3]`` for ``num_shuffles=3``. Shuffles: list[int], optional Alternatively the user can also give a list of shuffles. userfeedback: bool, optional, default=False If ``False``, all requested train/test splits are created (no matter if they already exist). If you want to assure that previous splits etc. are not overwritten, set this to ``True`` and you will be asked for each split. trainIndices: list of lists, optional, default=None List of one or multiple lists containing train indexes. A list containing two lists of training indexes will produce two splits. testIndices: list of lists, optional, default=None List of one or multiple lists containing test indexes. net_type: list, optional, default=None Type of networks. Currently supported options are * ``resnet_50`` * ``resnet_101`` * ``resnet_152`` * ``mobilenet_v2_1.0`` * ``mobilenet_v2_0.75`` * ``mobilenet_v2_0.5`` * ``mobilenet_v2_0.35`` * ``efficientnet-b0`` * ``efficientnet-b1`` * ``efficientnet-b2`` * ``efficientnet-b3`` * ``efficientnet-b4`` * ``efficientnet-b5`` * ``efficientnet-b6`` augmenter_type: string, optional, default=None Type of augmenter. Currently supported augmenters are * ``default`` * ``scalecrop`` * ``imgaug`` * ``tensorpack`` * ``deterministic`` posecfg_template: string, optional, default=None Path to a ``pose_cfg.yaml`` file to use as a template for generating the new one for the current iteration. Useful if you would like to start with the same parameters a previous training iteration. None uses the default ``pose_cfg.yaml``. Returns ------- list(tuple) or None If training dataset was successfully created, a list of tuples is returned. The first two elements in each tuple represent the training fraction and the shuffle value. The last two elements in each tuple are arrays of integers representing the training and test indices. Returns None if training dataset could not be created. Notes ----- Use the function ``add_new_videos`` at any stage of the project to add more videos to the project. Examples -------- Linux/MacOS >>> deeplabcut.create_training_dataset( '/analysis/project/reaching-task/config.yaml', num_shuffles=1, ) Windows >>> deeplabcut.create_training_dataset( 'C:\\Users\\Ulf\\looming-task\\config.yaml', Shuffles=[3,17,5], ) """ import scipy.io as sio if windows2linux: # DeprecationWarnings are silenced since Python 3.2 unless triggered in __main__ warnings.warn( "`windows2linux` has no effect since 2.2.0.4 and will be removed in 2.2.1.", FutureWarning, ) # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) if posecfg_template: if not posecfg_template.endswith("pose_cfg.yaml"): raise ValueError( "posecfg_template argument must contain path to a pose_cfg.yaml file" ) else: print("Reloading pose_cfg parameters from " + posecfg_template + '\n') from deeplabcut.utils.auxiliaryfunctions import read_plainconfig prior_cfg = read_plainconfig(posecfg_template) if cfg.get("multianimalproject", False): from deeplabcut.generate_training_dataset.multiple_individuals_trainingsetmanipulation import ( create_multianimaltraining_dataset, ) create_multianimaltraining_dataset(config, num_shuffles, Shuffles, net_type=net_type) else: scorer = cfg["scorer"] project_path = cfg["project_path"] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder( cfg) # Path concatenation OS platform independent auxiliaryfunctions.attempttomakefolder(Path( os.path.join(project_path, str(trainingsetfolder))), recursive=True) Data = merge_annotateddatasets( cfg, Path(os.path.join(project_path, trainingsetfolder)), ) if Data is None: return Data = Data[scorer] # extract labeled data # loading & linking pretrained models if net_type is None: # loading & linking pretrained models net_type = cfg.get("default_net_type", "resnet_50") else: if ("resnet" in net_type or "mobilenet" in net_type or "efficientnet" in net_type): pass else: raise ValueError("Invalid network type:", net_type) if augmenter_type is None: augmenter_type = cfg.get("default_augmenter", "imgaug") if augmenter_type is None: # this could be in config.yaml for old projects! # updating variable if null/None! #backwardscompatability auxiliaryfunctions.edit_config(config, {"default_augmenter": "imgaug"}) augmenter_type = "imgaug" elif augmenter_type not in [ "default", "scalecrop", "imgaug", "tensorpack", "deterministic", ]: raise ValueError("Invalid augmenter type:", augmenter_type) if posecfg_template: if net_type != prior_cfg["net_type"]: print( "WARNING: Specified net_type does not match net_type from posecfg_template path entered. Proceed with caution." ) if augmenter_type != prior_cfg["dataset_type"]: print( "WARNING: Specified augmenter_type does not match dataset_type from posecfg_template path entered. Proceed with caution." ) # Loading the encoder (if necessary downloading from TF) dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() if not posecfg_template: defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") elif posecfg_template: defaultconfigfile = posecfg_template model_path, num_shuffles = auxfun_models.check_for_weights( net_type, Path(dlcparent_path), num_shuffles) if Shuffles is None: Shuffles = range(1, num_shuffles + 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] # print(trainIndices,testIndices, Shuffles, augmenter_type,net_type) if trainIndices is None and testIndices is None: splits = [( trainFraction, shuffle, SplitTrials(range(len(Data.index)), trainFraction), ) for trainFraction in cfg["TrainingFraction"] for shuffle in Shuffles] else: if len(trainIndices) != len(testIndices) != len(Shuffles): raise ValueError( "Number of Shuffles and train and test indexes should be equal." ) splits = [] for shuffle, (train_inds, test_inds) in enumerate( zip(trainIndices, testIndices)): trainFraction = round( len(train_inds) * 1.0 / (len(train_inds) + len(test_inds)), 2) print( f"You passed a split with the following fraction: {int(100 * trainFraction)}%" ) # Now that the training fraction is guaranteed to be correct, # the values added to pad the indices are removed. train_inds = np.asarray(train_inds) train_inds = train_inds[train_inds != -1] test_inds = np.asarray(test_inds) test_inds = test_inds[test_inds != -1] splits.append((trainFraction, Shuffles[shuffle], (train_inds, test_inds))) bodyparts = cfg["bodyparts"] nbodyparts = len(bodyparts) for trainFraction, shuffle, (trainIndices, testIndices) in splits: if len(trainIndices) > 0: if userfeedback: trainposeconfigfile, _, _ = training.return_train_network_path( config, shuffle=shuffle, trainingsetindex=cfg["TrainingFraction"].index( trainFraction), ) if trainposeconfigfile.is_file(): askuser = input( "The model folder is already present. If you continue, it will overwrite the existing model (split). Do you want to continue?(yes/no): " ) if (askuser == "no" or askuser == "No" or askuser == "N" or askuser == "No"): raise Exception( "Use the Shuffles argument as a list to specify a different shuffle index. Check out the help for more details." ) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### # Make training file! ( datafilename, metadatafilename, ) = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving data file (convert to training file for deeper cut (*.mat)) ################################################################################ data, MatlabData = format_training_data( Data, trainIndices, nbodyparts, project_path) sio.savemat(os.path.join(project_path, datafilename), {"dataset": MatlabData}) ################################################################################ # Saving metadata (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndices, testIndices, trainFraction, ) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.get_model_folder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder( Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/train") auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/test") path_train_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "train", "pose_cfg.yaml", )) path_test_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "pose_cfg.yaml", )) # str(cfg['proj_path']+'/'+Path(modelfoldername) / 'test' / 'pose_cfg.yaml') items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(bodyparts), "all_joints": [[i] for i in range(len(bodyparts))], "all_joints_names": [str(bpt) for bpt in bodyparts], "init_weights": model_path, "project_path": str(cfg["project_path"]), "net_type": net_type, "dataset_type": augmenter_type, } items2drop = {} if augmenter_type == "scalecrop": # these values are dropped as scalecrop # doesn't have rotation implemented items2drop = {"rotation": 0, "rotratio": 0.0} # Also drop maDLC smart cropping augmentation parameters for key in [ "pre_resize", "crop_size", "max_shift", "crop_sampling" ]: items2drop[key] = None trainingdata = MakeTrain_pose_yaml(items2change, path_train_config, defaultconfigfile, items2drop) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", "init_weights", "global_scale", "location_refinement", "locref_stdev", ] MakeTest_pose_yaml(trainingdata, keys2save, path_test_config) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" ) return splits
def create_pretrained_human_project(project, experimenter, videos, working_directory=None, copy_videos=False, videotype='.avi', createlabeledvideo=True, analyzevideo=True): """ Creates a demo human project and analyzes a video with ResNet 101 weights pretrained on MPII Human Pose. This is from the DeeperCut paper by Insafutdinov et al. https://arxiv.org/abs/1605.03170 Please make sure to cite it too if you use this code! Parameters ---------- project : string String containing the name of the project. experimenter : string String containing the name of the experimenter. videos : list A list of string containing the full paths of the videos to include in the project. working_directory : string, optional The directory where the project will be created. The default is the ``current working directory``; if provided, it must be a string. copy_videos : bool, optional If this is set to True, the videos are copied to the ``videos`` directory. If it is False,symlink of the videos are copied to the project/videos directory. The default is ``False``; if provided it must be either ``True`` or ``False``. analyzevideo " bool, optional If true, then the video is analzyed and a labeled video is created. If false, then only the project will be created and the weights downloaded. You can then access them Example -------- Linux/MacOs >>> deeplabcut.create_pretrained_human_project('human','Linus',['/data/videos/mouse1.avi'],'/analysis/project/',copy_videos=False) Windows: >>> deeplabcut.create_pretrained_human_project('human','Bill',[r'C:\yourusername\rig-95\Videos\reachingvideo1.avi'],r'C:\yourusername\analysis\project' copy_videos=False) Users must format paths with either: r'C:\ OR 'C:\\ <- i.e. a double backslash \ \ ) -------- """ cfg = deeplabcut.create_new_project(project, experimenter, videos, working_directory, copy_videos, videotype) config = auxiliaryfunctions.read_config(cfg) config['bodyparts'] = [ 'ankle1', 'knee1', 'hip1', 'hip2', 'knee2', 'ankle2', 'wrist1', 'elbow1', 'shoulder1', 'shoulder2', 'elbow2', 'wrist2', 'chin', 'forehead' ] config['skeleton'] = [['ankle1', 'knee1'], ['ankle2', 'knee2'], ['knee1', 'hip1'], ['knee2', 'hip2'], ['hip1', 'hip2'], ['shoulder1', 'shoulder2'], ['shoulder1', 'hip1'], ['shoulder2', 'hip2'], ['shoulder1', 'elbow1'], ['shoulder2', 'elbow2'], ['chin', 'forehead'], ['elbow1', 'wrist1'], ['elbow2', 'wrist2']] config['default_net_type'] = 'resnet_101' auxiliaryfunctions.write_config(cfg, config) config = auxiliaryfunctions.read_config(cfg) train_dir = Path( os.path.join( config['project_path'], str( auxiliaryfunctions.GetModelFolder( trainFraction=config['TrainingFraction'][0], shuffle=1, cfg=config)), 'train')) test_dir = Path( os.path.join( config['project_path'], str( auxiliaryfunctions.GetModelFolder( trainFraction=config['TrainingFraction'][0], shuffle=1, cfg=config)), 'test')) # Create the model directory train_dir.mkdir(parents=True, exist_ok=True) test_dir.mkdir(parents=True, exist_ok=True) modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction=config['TrainingFraction'][0], shuffle=1, cfg=config) path_train_config = str( os.path.join(config['project_path'], Path(modelfoldername), 'train', 'pose_cfg.yaml')) path_test_config = str( os.path.join(config['project_path'], Path(modelfoldername), 'test', 'pose_cfg.yaml')) # Download the weights and put then in appropriate directory cwd = os.getcwd() os.chdir(train_dir) print( "Checking if the weights are already available, otherwise I will download them!" ) weightfilename = auxfun_models.download_mpii_weigths(train_dir) os.chdir(cwd) # Create the pose_config.yaml files parent_path = Path(os.path.dirname(deeplabcut.__file__)) defaultconfigfile = str(parent_path / 'pose_cfg.yaml') trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(config) datafilename, metadatafilename = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction=config['TrainingFraction'][0], shuffle=1, cfg=config) bodyparts = config['bodyparts'] net_type = 'resnet_101' num_shuffles = 1 model_path, num_shuffles = auxfun_models.Check4weights( net_type, parent_path, num_shuffles) items2change = { "dataset": 'dataset-test.mat', #datafilename, "metadataset": metadatafilename, "num_joints": len(bodyparts), "all_joints": [[i] for i in range(len(bodyparts))], "all_joints_names": [str(bpt) for bpt in bodyparts], "init_weights": weightfilename.split('.index')[0], #'models/mpii/snapshot-1030000', "project_path": str(config['project_path']), "net_type": net_type, "dataset_type": "default" } trainingdata = MakeTrain_pose_yaml(items2change, path_train_config, defaultconfigfile) keys2save = [ "dataset", "dataset_type", "num_joints", "all_joints", "all_joints_names", "net_type", 'init_weights', 'global_scale', 'location_refinement', 'locref_stdev' ] MakeTest_pose_yaml(trainingdata, keys2save, path_test_config) video_dir = os.path.join(config['project_path'], 'videos') if analyzevideo == True: # Analyze the videos deeplabcut.analyze_videos(cfg, [video_dir], videotype, save_as_csv=True) if createlabeledvideo == True: deeplabcut.create_labeled_video(cfg, [video_dir], videotype, draw_skeleton=True) deeplabcut.plot_trajectories(cfg, [video_dir], videotype) return cfg, path_train_config
def create_training_dataset(config,num_shuffles=1,Shuffles=None,windows2linux=False,userfeedback=False, trainIndexes=None,testIndexes=None, net_type=None,augmenter_type=None): """ Creates a training dataset. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL] Use the function 'add_new_video' at any stage of the project to add more videos to the project. Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. userfeedback: bool, optional If this is set to false, then all requested train/test splits are created (no matter if they already exist). If you want to assure that previous splits etc. are not overwritten, then set this to True and you will be asked for each split. trainIndexes: list of lists, optional (default=None) List of one or multiple lists containing train indexes. A list containing two lists of training indexes will produce two splits. testIndexes: list of lists, optional (default=None) List of test indexes. net_type: string Type of networks. Currently resnet_50, resnet_101, resnet_152, mobilenet_v2_1.0,mobilenet_v2_0.75, mobilenet_v2_0.5, and mobilenet_v2_0.35 are supported. augmenter_type: string Type of augmenter. Currently default, imgaug, tensorpack, and deterministic are supported. Example -------- >>> deeplabcut.create_training_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_training_dataset('C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ import scipy.io as sio # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg['scorer'] project_path = cfg['project_path'] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) #Path concatenation OS platform independent auxiliaryfunctions.attempttomakefolder(Path(os.path.join(project_path,str(trainingsetfolder))),recursive=True) Data = merge_annotateddatasets(cfg,project_path,Path(os.path.join(project_path,trainingsetfolder)),windows2linux) Data = Data[scorer] #extract labeled data #loading & linking pretrained models if net_type is None: #loading & linking pretrained models net_type =cfg.get('default_net_type', 'resnet_50') else: if 'resnet' in net_type or 'mobilenet' in net_type: pass else: raise ValueError('Invalid network type:', net_type) if augmenter_type is None: augmenter_type=cfg.get('default_augmenter', 'default') else: if augmenter_type in ['default','imgaug','tensorpack','deterministic']: pass else: raise ValueError('Invalid augmenter type:', augmenter_type) import deeplabcut parent_path = Path(os.path.dirname(deeplabcut.__file__)) defaultconfigfile = str(parent_path / 'pose_cfg.yaml') model_path,num_shuffles=auxfun_models.Check4weights(net_type,parent_path,num_shuffles) #if the model does not exist >> throws error! if Shuffles is None: Shuffles = range(1, num_shuffles + 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] if trainIndexes is None and testIndexes is None: splits = [(trainFraction, shuffle, SplitTrials(range(len(Data.index)), trainFraction)) for trainFraction in cfg['TrainingFraction'] for shuffle in Shuffles] else: if len(trainIndexes) != len(testIndexes): raise ValueError('Number of train and test indexes should be equal.') splits = [] for shuffle, (train_inds, test_inds) in enumerate(zip(trainIndexes, testIndexes)): trainFraction = len(train_inds) / (len(train_inds) + len(test_inds)) print(f"You passed a split with the following fraction: {int(100 * trainFraction)}%") splits.append((trainFraction, shuffle, (train_inds, test_inds))) bodyparts = cfg['bodyparts'] nbodyparts = len(bodyparts) for trainFraction, shuffle, (trainIndexes, testIndexes) in splits: if len(trainIndexes)>0: if userfeedback: trainposeconfigfile, _, _ = training.return_train_network_path(config, shuffle=shuffle, trainFraction=trainFraction) if trainposeconfigfile.is_file(): askuser=input ("The model folder is already present. If you continue, it will overwrite the existing model (split). Do you want to continue?(yes/no): ") if askuser=='no'or askuser=='No' or askuser=='N' or askuser=='No': raise Exception("Use the Shuffles argument as a list to specify a different shuffle index. Check out the help for more details.") #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### # Make training file! datafilename, metadatafilename = auxiliaryfunctions.GetDataandMetaDataFilenames(trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving data file (convert to training file for deeper cut (*.mat)) ################################################################################ data, MatlabData = format_training_data(Data, trainIndexes, nbodyparts, project_path) sio.savemat(os.path.join(project_path,datafilename), {'dataset': MatlabData}) ################################################################################ # Saving metadata (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata(os.path.join(project_path,metadatafilename),data, trainIndexes, testIndexes, trainFraction) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername=auxiliaryfunctions.GetModelFolder(trainFraction,shuffle,cfg) auxiliaryfunctions.attempttomakefolder(Path(config).parents[0] / modelfoldername,recursive=True) auxiliaryfunctions.attempttomakefolder(str(Path(config).parents[0] / modelfoldername)+ '/'+ '/train') auxiliaryfunctions.attempttomakefolder(str(Path(config).parents[0] / modelfoldername)+ '/'+ '/test') path_train_config = str(os.path.join(cfg['project_path'],Path(modelfoldername),'train','pose_cfg.yaml')) path_test_config = str(os.path.join(cfg['project_path'],Path(modelfoldername),'test','pose_cfg.yaml')) #str(cfg['proj_path']+'/'+Path(modelfoldername) / 'test' / 'pose_cfg.yaml') items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(bodyparts), "all_joints": [[i] for i in range(len(bodyparts))], "all_joints_names": [str(bpt) for bpt in bodyparts], "init_weights": model_path, "project_path": str(cfg['project_path']), "net_type": net_type, "dataset_type": augmenter_type, } trainingdata = MakeTrain_pose_yaml(items2change,path_train_config,defaultconfigfile) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", 'init_weights', 'global_scale', 'location_refinement', 'locref_stdev' ] MakeTest_pose_yaml(trainingdata, keys2save,path_test_config) print("The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!")
def create_training_dataset(config,num_shuffles=1,Shuffles=None,windows2linux=False,userfeedback=False, trainIndexes=None,testIndexes=None, net_type=None,augmenter_type=None,defaultconfigfile=None,items2change_pose={}): """ Creates a training dataset. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL] Use the function 'add_new_video' at any stage of the project to add more videos to the project. Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. userfeedback: bool, optional If this is set to false, then all requested train/test splits are created (no matter if they already exist). If you want to assure that previous splits etc. are not overwritten, then set this to True and you will be asked for each split. net_type: string Type of networks. Currently resnet_50, resnet_101, resnet_152, mobilenet_v2_1.0,mobilenet_v2_0.75, mobilenet_v2_0.5, and mobilenet_v2_0.35 are supported. augmenter_type: string Type of augmenter. Currently default, imgaug, tensorpack, and deterministic are supported. Example -------- >>> deeplabcut.create_training_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_training_dataset('C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ from skimage import io import scipy.io as sio # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg['scorer'] project_path = cfg['project_path'] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) #Path concatenation OS platform independent auxiliaryfunctions.attempttomakefolder(Path(os.path.join(project_path,str(trainingsetfolder))),recursive=True) Data = merge_annotateddatasets(cfg,project_path,Path(os.path.join(project_path,trainingsetfolder)),windows2linux) Data = Data[scorer] #extract labeled data #%% # check if we need to update the netwoek items2change_flag = bool(items2change_pose) if items2change_flag: # not empty net_type = items2change_pose.get('net_type', None) #loading & linking pretrained models if net_type is None: #loading & linking pretrained models net_type =cfg.get('default_net_type', 'resnet_50') else: if 'resnet' in net_type or 'mobilenet' in net_type: pass else: raise ValueError('Invalid network type:', net_type) if augmenter_type is None: augmenter_type=cfg.get('default_augmenter', 'default') else: if augmenter_type in ['default','imgaug','tensorpack','deterministic']: pass else: raise ValueError('Invalid augmenter type:', augmenter_type) import deeplabcut if defaultconfigfile is None: parent_path = Path(os.path.dirname(deeplabcut.__file__)) defaultconfigfile = str(parent_path / 'pose_cfg.yaml') model_path,num_shuffles=auxfun_models.Check4weights(net_type,parent_path,num_shuffles) #if the model does not exist >> throws error! if Shuffles==None: Shuffles=range(1,num_shuffles+1,1) else: Shuffles=[i for i in Shuffles if isinstance(i,int)] bodyparts = cfg['bodyparts'] TrainingFraction = cfg['TrainingFraction'] for shuffle in Shuffles: # Creating shuffles starting from 1 for trainingsetindex,trainFraction in enumerate(TrainingFraction): if userfeedback: trainposeconfigfile,testposeconfigfile,snapshotfolder = training.return_train_network_path(config,shuffle=shuffle,trainingsetindex=trainingsetindex) if os.path.isfile(trainposeconfigfile): askuser=input ("The model folder is already present. If you continue, it will overwrite the existing model (split). Do you want to continue?(yes/no): ") if askuser=='no'or askuser=='No' or askuser=='N' or askuser=='No': raise Exception("Use the Shuffles argument as a list to specify a different shuffle index. Check out the help for more details.") else: pass #trainIndexes, testIndexes = SplitTrials(range(len(Data.index)), trainFraction) if trainIndexes is None and testIndexes is None: trainIndexes, testIndexes = SplitTrials(range(len(Data.index)), trainFraction) else: print("You passed a split with the following fraction:", len(trainIndexes)*1./(len(testIndexes)+len(trainIndexes))*100) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### # Make training file! data = [] for jj in trainIndexes: H = {} # load image to get dimensions: filename = Data.index[jj] im = io.imread(os.path.join(cfg['project_path'],filename)) H['image'] = filename if np.ndim(im)==3: H['size'] = np.array( [np.shape(im)[2], np.shape(im)[0], np.shape(im)[1]]) else: # print "Grayscale!" H['size'] = np.array([1, np.shape(im)[0], np.shape(im)[1]]) indexjoints=0 joints=np.zeros((len(bodyparts),3))*np.nan for bpindex,bodypart in enumerate(bodyparts): # check whether the labels are positive and inside the img x_pos_n_inside = 0 <= Data[bodypart]['x'][jj] < np.shape(im)[1] y_pos_n_inside = 0 <= Data[bodypart]['y'][jj] < np.shape(im)[0] if x_pos_n_inside and y_pos_n_inside: joints[indexjoints,0]=int(bpindex) joints[indexjoints,1]=Data[bodypart]['x'][jj] joints[indexjoints,2]=Data[bodypart]['y'][jj] indexjoints+=1 joints = joints[np.where( np.prod(np.isfinite(joints), 1))[0], :] # drop NaN, i.e. lines for missing body parts assert (np.prod(np.array(joints[:, 2]) < np.shape(im)[0]) ) # y coordinate within image? assert (np.prod(np.array(joints[:, 1]) < np.shape(im)[1]) ) # x coordinate within image? H['joints'] = np.array(joints, dtype=int) if np.size(joints)>0: #exclude images without labels data.append(H) if len(trainIndexes)>0: datafilename,metadatafilename=auxiliaryfunctions.GetDataandMetaDataFilenames(trainingsetfolder,trainFraction,shuffle,cfg) ################################################################################ # Saving metadata (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata(os.path.join(project_path,metadatafilename),data, trainIndexes, testIndexes, trainFraction) ################################################################################ # Saving data file (convert to training file for deeper cut (*.mat)) ################################################################################ DTYPE = [('image', 'O'), ('size', 'O'), ('joints', 'O')] MatlabData = np.array( [(np.array([data[item]['image']], dtype='U'), np.array([data[item]['size']]), boxitintoacell(data[item]['joints'])) for item in range(len(data))], dtype=DTYPE) sio.savemat(os.path.join(project_path,datafilename), {'dataset': MatlabData}) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername=auxiliaryfunctions.GetModelFolder(trainFraction,shuffle,cfg) auxiliaryfunctions.attempttomakefolder(Path(config).parents[0] / modelfoldername,recursive=True) auxiliaryfunctions.attempttomakefolder(str(Path(config).parents[0] / modelfoldername)+ '/'+ '/train') auxiliaryfunctions.attempttomakefolder(str(Path(config).parents[0] / modelfoldername)+ '/'+ '/test') path_train_config = str(os.path.join(cfg['project_path'],Path(modelfoldername),'train','pose_cfg.yaml')) path_test_config = str(os.path.join(cfg['project_path'],Path(modelfoldername),'test','pose_cfg.yaml')) #str(cfg['proj_path']+'/'+Path(modelfoldername) / 'test' / 'pose_cfg.yaml') items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(bodyparts), "all_joints": [[i] for i in range(len(bodyparts))], "all_joints_names": [str(bpt) for bpt in bodyparts], "init_weights": model_path, "project_path": str(cfg['project_path']), "net_type": net_type, "dataset_type": augmenter_type } items2change.update(items2change_pose) trainingdata = MakeTrain_pose_yaml(items2change,path_train_config,defaultconfigfile) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", 'init_weights', 'global_scale', 'location_refinement', 'locref_stdev' ] MakeTest_pose_yaml(trainingdata, keys2save,path_test_config) print("The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!") return
def create_pretrained_project( project, experimenter, videos, model="full_human", working_directory=None, copy_videos=False, videotype=None, analyzevideo=True, filtered=True, createlabeledvideo=True, trainFraction=None, ): """ Creates a new project directory, sub-directories and a basic configuration file. Change its parameters to your projects need. The project will also be initialized with a pre-trained model from the DeepLabCut model zoo! http://www.mousemotorlab.org/dlc-modelzoo Parameters ---------- project : string String containing the name of the project. experimenter : string String containing the name of the experimenter. model: string, options see http://www.mousemotorlab.org/dlc-modelzoo Current option and default: 'full_human' Creates a demo human project and analyzes a video with ResNet 101 weights pretrained on MPII Human Pose. This is from the DeeperCut paper by Insafutdinov et al. https://arxiv.org/abs/1605.03170 Please make sure to cite it too if you use this code! videos : list A list of string containing the full paths of the videos to include in the project. working_directory : string, optional The directory where the project will be created. The default is the ``current working directory``; if provided, it must be a string. copy_videos : bool, optional ON WINDOWS: TRUE is often necessary! If this is set to True, the videos are copied to the ``videos`` directory. If it is False,symlink of the videos are copied to the project/videos directory. The default is ``False``; if provided it must be either ``True`` or ``False``. analyzevideo " bool, optional If true, then the video is analzyed and a labeled video is created. If false, then only the project will be created and the weights downloaded. You can then access them filtered: bool, default false Boolean variable indicating if filtered pose data output should be plotted rather than frame-by-frame predictions. Filtered version can be calculated with deeplabcut.filterpredictions trainFraction: By default value from *new* projects. (0.95) Fraction that will be used in dlc-model/trainingset folder name. Example -------- Linux/MacOs loading full_human model and analzying video /homosapiens1.avi >>> deeplabcut.create_pretrained_project('humanstrokestudy','Linus',['/data/videos/homosapiens1.avi'], copy_videos=False) Loading full_cat model and analzying video "felixfeliscatus3.avi" >>> deeplabcut.create_pretrained_project('humanstrokestudy','Linus',['/data/videos/felixfeliscatus3.avi'], model='full_cat') Windows: >>> deeplabcut.create_pretrained_project('humanstrokestudy','Bill',[r'C:\yourusername\rig-95\Videos\reachingvideo1.avi'],r'C:\yourusername\analysis\project' copy_videos=True) Users must format paths with either: r'C:\ OR 'C:\\ <- i.e. a double backslash \ \ ) """ if model in globals()["Modeloptions"]: cwd = os.getcwd() cfg = deeplabcut.create_new_project(project, experimenter, videos, working_directory, copy_videos, videotype) if trainFraction is not None: auxiliaryfunctions.edit_config( cfg, {"TrainingFraction": [tranFraction]}) config = auxiliaryfunctions.read_config(cfg) if model == "full_human": config["bodyparts"] = [ "ankle1", "knee1", "hip1", "hip2", "knee2", "ankle2", "wrist1", "elbow1", "shoulder1", "shoulder2", "elbow2", "wrist2", "chin", "forehead", ] config["skeleton"] = [ ["ankle1", "knee1"], ["ankle2", "knee2"], ["knee1", "hip1"], ["knee2", "hip2"], ["hip1", "hip2"], ["shoulder1", "shoulder2"], ["shoulder1", "hip1"], ["shoulder2", "hip2"], ["shoulder1", "elbow1"], ["shoulder2", "elbow2"], ["chin", "forehead"], ["elbow1", "wrist1"], ["elbow2", "wrist2"], ] config["default_net_type"] = "resnet_101" else: # just make a case and put the stuff you want. # TBD: 'partaffinityfield_graph' >> use to set skeleton! pass auxiliaryfunctions.write_config(cfg, config) config = auxiliaryfunctions.read_config(cfg) train_dir = Path( os.path.join( config["project_path"], str( auxiliaryfunctions.GetModelFolder( trainFraction=config["TrainingFraction"][0], shuffle=1, cfg=config, )), "train", )) test_dir = Path( os.path.join( config["project_path"], str( auxiliaryfunctions.GetModelFolder( trainFraction=config["TrainingFraction"][0], shuffle=1, cfg=config, )), "test", )) # Create the model directory train_dir.mkdir(parents=True, exist_ok=True) test_dir.mkdir(parents=True, exist_ok=True) modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction=config["TrainingFraction"][0], shuffle=1, cfg=config) path_train_config = str( os.path.join(config["project_path"], Path(modelfoldername), "train", "pose_cfg.yaml")) path_test_config = str( os.path.join(config["project_path"], Path(modelfoldername), "test", "pose_cfg.yaml")) # Download the weights and put then in appropriate directory print("Dowloading weights...") auxfun_models.DownloadModel(model, train_dir) pose_cfg = deeplabcut.auxiliaryfunctions.read_plainconfig( path_train_config) print(path_train_config) # Updating config file: dict = { "default_net_type": pose_cfg["net_type"], "default_augmenter": pose_cfg["dataset_type"], "bodyparts": pose_cfg["all_joints_names"], "skeleton": [], # TODO: update with paf_graph "dotsize": 6, } auxiliaryfunctions.edit_config(cfg, dict) # Create the pose_config.yaml files parent_path = Path(os.path.dirname(deeplabcut.__file__)) defaultconfigfile = str(parent_path / "pose_cfg.yaml") trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(config) datafilename, metadatafilename = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction=config["TrainingFraction"][0], shuffle=1, cfg=config, ) # downloading base encoder / not required unless on re-trains (but when a training set is created this happens anyway) # model_path, num_shuffles=auxfun_models.Check4weights(pose_cfg['net_type'], parent_path, num_shuffles= 1) # Updating training and test pose_cfg: snapshotname = [fn for fn in os.listdir(train_dir) if ".meta" in fn][0].split(".meta")[0] dict2change = { "init_weights": str(os.path.join(train_dir, snapshotname)), "project_path": str(config["project_path"]), } UpdateTrain_pose_yaml(pose_cfg, dict2change, path_train_config) keys2save = [ "dataset", "dataset_type", "num_joints", "all_joints", "all_joints_names", "net_type", "init_weights", "global_scale", "location_refinement", "locref_stdev", ] MakeTest_pose_yaml(pose_cfg, keys2save, path_test_config) video_dir = os.path.join(config["project_path"], "videos") if analyzevideo == True: print("Analyzing video...") deeplabcut.analyze_videos(cfg, [video_dir], videotype, save_as_csv=True) if createlabeledvideo == True: if filtered: deeplabcut.filterpredictions(cfg, [video_dir], videotype) print("Plotting results...") deeplabcut.create_labeled_video(cfg, [video_dir], videotype, draw_skeleton=True, filtered=filtered) deeplabcut.plot_trajectories(cfg, [video_dir], videotype, filtered=filtered) os.chdir(cwd) return cfg, path_train_config else: return "N/A", "N/A"
def create_training_dataset_CLARA(config, num_shuffles=1, Shuffles=None, windows2linux=False, trainIndexes=None, testIndexes=None): """ Creates a training dataset. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL] Use the function 'add_new_video' at any stage of the project to add more videos to the project. Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. Example -------- >>> deeplabcut.create_training_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_training_dataset('C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ from skimage import io import scipy.io as sio from deeplabcut.utils import auxiliaryfunctions, auxfun_models # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg['scorer'] project_path = cfg['project_path'] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder( cfg) #Path concatenation OS platform independent auxiliaryfunctions.attempttomakefolder(Path( os.path.join(project_path, str(trainingsetfolder))), recursive=True) """ Merges all the h5 files for all labeled-datasets (from individual videos). """ AnnotationData = None data_path = Path(os.path.join(project_path, 'labeled-data')) videos = cfg['video_sets'].keys() video_names = [Path(i).stem for i in videos] for i in video_names: try: data = pd.read_hdf((str(data_path / Path(i)) + '/CollectedData_' + cfg['scorer'] + '.h5'), 'df_with_missing') smlData = data.dropna(how='all') smlKeys = list(smlData.index.values) smlKeyLong = list() for sk in smlKeys: smlKeyLong.append('labeled-data/' + str(Path(i)) + '/' + sk) smlData.index = smlKeyLong data = smlData if AnnotationData is None: AnnotationData = data else: AnnotationData = pd.concat([AnnotationData, data]) except FileNotFoundError: print((str(data_path / Path(i)) + '/CollectedData_' + cfg['scorer'] + '.h5'), " not found (perhaps not annotated)") trainingsetfolder_full = Path(os.path.join(project_path, trainingsetfolder)) filename = str( str(trainingsetfolder_full) + '/' + '/CollectedData_' + cfg['scorer']) AnnotationData.to_hdf(filename + '.h5', key='df_with_missing', mode='w') AnnotationData.to_csv(filename + '.csv') #human readable. Data = AnnotationData Data = Data[scorer] #extract labeled data #loading & linking pretrained models net_type = 'resnet_' + str(cfg['resnet']) import deeplabcut parent_path = Path(os.path.dirname(deeplabcut.__file__)) defaultconfigfile = str(parent_path / 'pose_cfg.yaml') model_path, num_shuffles = auxfun_models.Check4weights( net_type, parent_path, num_shuffles) if Shuffles == None: Shuffles = range(1, num_shuffles + 1, 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] bodyparts = cfg['bodyparts'] if isinstance(bodyparts, list): parts = bodyparts else: parts = list() categories = list() for cat in bodyparts.keys(): categories.append(cat) for key in categories: for ptname in bodyparts[key]: parts.append(ptname) bodyparts = parts TrainingFraction = cfg['TrainingFraction'] for shuffle in Shuffles: # Creating shuffles starting from 1 for trainFraction in TrainingFraction: #trainIndexes, testIndexes = SplitTrials(range(len(Data.index)), trainFraction) if trainIndexes is None and testIndexes is None: trainIndexes, testIndexes = SplitTrials_CLARA( range(len(Data.index)), trainFraction) else: print( "You passed a split with the following fraction:", len(trainIndexes) * 1. / (len(testIndexes) + len(trainIndexes)) * 100) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### # Make training file! data = [] for jj in trainIndexes: H = {} # load image to get dimensions: filename = Data.index[jj] im = io.imread(os.path.join(cfg['project_path'], filename)) H['image'] = filename if np.ndim(im) == 3: H['size'] = np.array( [np.shape(im)[2], np.shape(im)[0], np.shape(im)[1]]) else: # print "Grayscale!" H['size'] = np.array([1, np.shape(im)[0], np.shape(im)[1]]) indexjoints = 0 joints = np.zeros((len(bodyparts), 3)) * np.nan for bpindex, bodypart in enumerate(bodyparts): if Data[bodypart]['x'][jj] < np.shape( im)[1] and Data[bodypart]['y'][jj] < np.shape( im)[0]: #are labels in image? joints[indexjoints, 0] = int(bpindex) joints[indexjoints, 1] = Data[bodypart]['x'][jj] joints[indexjoints, 2] = Data[bodypart]['y'][jj] indexjoints += 1 joints = joints[np.where(np.prod( np.isfinite(joints), 1))[0], :] # drop NaN, i.e. lines for missing body parts assert (np.prod(np.array(joints[:, 2]) < np.shape(im)[0]) ) # y coordinate within image? assert (np.prod(np.array(joints[:, 1]) < np.shape(im)[1]) ) # x coordinate within image? H['joints'] = np.array(joints, dtype=int) if np.size(joints) > 0: #exclude images without labels data.append(H) if len(trainIndexes) > 0: datafilename, metadatafilename = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving metadata (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndexes, testIndexes, trainFraction) ################################################################################ # Saving data file (convert to training file for deeper cut (*.mat)) ################################################################################ DTYPE = [('image', 'O'), ('size', 'O'), ('joints', 'O')] MatlabData = np.array( [(np.array([data[item]['image']], dtype='U'), np.array([data[item]['size']]), boxitintoacell_CLARA(data[item]['joints'])) for item in range(len(data))], dtype=DTYPE) sio.savemat(os.path.join(project_path, datafilename), {'dataset': MatlabData}) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder( Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + '/' + '/train') auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + '/' + '/test') path_train_config = str( os.path.join(cfg['project_path'], Path(modelfoldername), 'train', 'pose_cfg.yaml')) path_test_config = str( os.path.join(cfg['project_path'], Path(modelfoldername), 'test', 'pose_cfg.yaml')) #str(cfg['proj_path']+'/'+Path(modelfoldername) / 'test' / 'pose_cfg.yaml') items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(bodyparts), "all_joints": [[i] for i in range(len(bodyparts))], "all_joints_names": [str(bpt) for bpt in bodyparts], "init_weights": model_path, "project_path": str(cfg['project_path']), "net_type": net_type, "crop": 'False' } trainingdata = MakeTrain_pose_yaml_CLARA( items2change, path_train_config, defaultconfigfile) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", 'init_weights', 'global_scale', 'location_refinement', 'locref_stdev' ] MakeTest_pose_yaml_CLARA(trainingdata, keys2save, path_test_config) deeplabcut.train_network(config)
def create_multianimaltraining_dataset( config, num_shuffles=1, Shuffles=None, windows2linux=False, net_type=None, numdigits=2, ): """ Creates a training dataset for multi-animal datasets. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL] Use the function 'add_new_video' at any stage of the project to add more videos to the project. Imporant differences to standard: - stores coordinates with numdigits as many digits - creates Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. net_type: string Type of networks. Currently resnet_50, resnet_101, and resnet_152 are supported (not the MobileNets!) numdigits: int, optional Example -------- >>> deeplabcut.create_multianimaltraining_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_multianimaltraining_dataset(r'C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ from skimage import io # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg["scorer"] project_path = cfg["project_path"] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder( cfg) # Path concatenatn OS platform independent auxiliaryfunctions.attempttomakefolder(Path( os.path.join(project_path, str(trainingsetfolder))), recursive=True) Data = trainingsetmanipulation.merge_annotateddatasets( cfg, Path(os.path.join(project_path, trainingsetfolder)), windows2linux) if Data is None: return Data = Data[scorer] # extract labeled data # actualbpts=set(Data.columns.get_level_values(0)) def strip_cropped_image_name(path): # utility function to split different crops from same image into either train or test! filename = os.path.split(path)[1] return filename.split("c")[0] img_names = Data.index.map(strip_cropped_image_name).unique() # loading & linking pretrained models # CURRENTLY ONLY ResNet supported! if net_type is None: # loading & linking pretrained models net_type = cfg.get("default_net_type", "resnet_50") else: if "resnet" in net_type: # or 'mobilenet' in net_type: pass else: raise ValueError("Currently only resnet is supported.") # multianimal case: dataset_type = "multi-animal-imgaug" partaffinityfield_graph = auxfun_multianimal.getpafgraph(cfg, printnames=False) # ATTENTION: order has to be multibodyparts, then uniquebodyparts (for indexing) print("Utilizing the following graph:", partaffinityfield_graph) num_limbs = len(partaffinityfield_graph) partaffinityfield_predict = True # Loading the encoder (if necessary downloading from TF) dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") model_path, num_shuffles = auxfun_models.Check4weights( net_type, Path(dlcparent_path), num_shuffles) if Shuffles == None: Shuffles = range(1, num_shuffles + 1, 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] ( individuals, uniquebodyparts, multianimalbodyparts, ) = auxfun_multianimal.extractindividualsandbodyparts(cfg) TrainingFraction = cfg["TrainingFraction"] for shuffle in Shuffles: # Creating shuffles starting from 1 for trainFraction in TrainingFraction: train_inds_temp, test_inds_temp = trainingsetmanipulation.SplitTrials( range(len(img_names)), trainFraction) # Map back to the original indices. temp = [ name for i, name in enumerate(img_names) if i in test_inds_temp ] mask = Data.index.str.contains("|".join(temp)) testIndices = np.flatnonzero(mask) trainIndices = np.flatnonzero(~mask) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### # Make training file! data = [] print("Creating training data for ", shuffle, trainFraction) print("This can take some time...") for jj in tqdm(trainIndices): jointsannotated = False H = {} # load image to get dimensions: filename = Data.index[jj] im = io.imread(os.path.join(cfg["project_path"], filename)) H["image"] = filename try: H["size"] = np.array( [np.shape(im)[2], np.shape(im)[0], np.shape(im)[1]]) except: # print "Grayscale!" H["size"] = np.array([1, np.shape(im)[0], np.shape(im)[1]]) Joints = {} for prfxindex, prefix in enumerate(individuals): joints = (np.zeros( (len(uniquebodyparts) + len(multianimalbodyparts), 3)) * np.nan) if prefix != "single": # first ones are multianimalparts! indexjoints = 0 for bpindex, bodypart in enumerate( multianimalbodyparts): socialbdpt = bodypart # prefix+bodypart #build names! # if socialbdpt in actualbpts: try: x, y = ( Data[prefix][socialbdpt]["x"][jj], Data[prefix][socialbdpt]["y"][jj], ) joints[indexjoints, 0] = int(bpindex) joints[indexjoints, 1] = round(x, numdigits) joints[indexjoints, 2] = round(y, numdigits) indexjoints += 1 except: pass else: indexjoints = len(multianimalbodyparts) for bpindex, bodypart in enumerate(uniquebodyparts): socialbdpt = bodypart # prefix+bodypart #build names! # if socialbdpt in actualbpts: try: x, y = ( Data[prefix][socialbdpt]["x"][jj], Data[prefix][socialbdpt]["y"][jj], ) joints[indexjoints, 0] = len( multianimalbodyparts) + int(bpindex) joints[indexjoints, 1] = round(x, 2) joints[indexjoints, 2] = round(y, 2) indexjoints += 1 except: pass # Drop missing body parts joints = joints[~np.isnan(joints).any(axis=1)] # Drop points lying outside the image inside = np.logical_and.reduce(( joints[:, 1] < im.shape[1], joints[:, 1] > 0, joints[:, 2] < im.shape[0], joints[:, 2] > 0, )) joints = joints[inside] if np.size(joints) > 0: # exclude images without labels jointsannotated = True Joints[prfxindex] = joints # np.array(joints, dtype=int) H["joints"] = Joints if jointsannotated: # exclude images without labels data.append(H) if len(trainIndices) > 0: ( datafilename, metadatafilename, ) = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving metadata and data file (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndices, testIndices, trainFraction, ) datafilename = datafilename.split(".mat")[0] + ".pickle" import pickle with open(os.path.join(project_path, datafilename), "wb") as f: # Pickle the 'labeled-data' dictionary using the highest protocol available. pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder( Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/" + "/train") auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/" + "/test") path_train_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "train", "pose_cfg.yaml", )) path_test_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "pose_cfg.yaml", )) path_inference_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "inference_cfg.yaml", )) jointnames = [str(bpt) for bpt in multianimalbodyparts] jointnames.extend([str(bpt) for bpt in uniquebodyparts]) items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(multianimalbodyparts) + len(uniquebodyparts), # cfg["uniquebodyparts"]), "all_joints": [[i] for i in range( len(multianimalbodyparts) + len(uniquebodyparts)) ], # cfg["uniquebodyparts"]))], "all_joints_names": jointnames, "init_weights": model_path, "project_path": str(cfg["project_path"]), "net_type": net_type, "pairwise_loss_weight": 0.1, "pafwidth": 20, "partaffinityfield_graph": partaffinityfield_graph, "partaffinityfield_predict": partaffinityfield_predict, "weigh_only_present_joints": False, "num_limbs": len(partaffinityfield_graph), "dataset_type": dataset_type, "optimizer": "adam", "batch_size": 8, "multi_step": [[1e-4, 7500], [5 * 1e-5, 12000], [1e-5, 200000]], "save_iters": 10000, "display_iters": 500, } defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") trainingdata = trainingsetmanipulation.MakeTrain_pose_yaml( items2change, path_train_config, defaultconfigfile) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", "init_weights", "global_scale", "location_refinement", "locref_stdev", "dataset_type", "partaffinityfield_predict", "pairwise_predict", "partaffinityfield_graph", "num_limbs", "dataset_type", ] trainingsetmanipulation.MakeTest_pose_yaml( trainingdata, keys2save, path_test_config, nmsradius=5.0, minconfidence=0.01, ) # setting important def. values for inference # Setting inference cfg file: defaultinference_configfile = os.path.join( dlcparent_path, "inference_cfg.yaml") items2change = { "minimalnumberofconnections": int(len(cfg["multianimalbodyparts"]) / 2), "topktoretain": len(cfg["individuals"]) + 1 * (len(cfg["uniquebodyparts"]) > 0), } # TODO: "distnormalization": could be calculated here based on data and set # >> now we calculate this during evaluation (which is a good spot...) trainingsetmanipulation.MakeInference_yaml( items2change, path_inference_config, defaultinference_configfile) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" ) else: pass
data_info.model_data_dir, scorer=data_info.scorer, date=date) # Load pretrained weights dlc_cfg = get_train_config(cfg, shuffle) # load training file trainingsnapshot_name, trainingsnapshot, dlc_cfg = load_dlc_snapshot( dlc_cfg, overwrite_snapshot=49999) # Load metadata from deeplabcut.utils import auxiliaryfunctions import os trainingsetindex = 0 trainFraction = cfg["TrainingFraction"][trainingsetindex] trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str(auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg))) data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) #%% scale = dlc_cfg['global_scale'] Data = pd.read_hdf( os.path.join(cfg["project_path"], str(trainingsetfolder), 'CollectedData_' + cfg["scorer"] + '.h5'), 'df_with_missing') * scale #%% num_labels, _ = Data.values.shape labeled_frames = np.empty(num_labels).astype('int') for frame_idx in range(num_labels):
def evaluate_multiview_network(config,videos,projection_matrices,multiview_step,snapshot_index=None,Shuffles=[1],plotting = None,show_errors = True,comparisonbodyparts="all",gputouse=None): """ Evaluates the network based on the saved models at different stages of the training network.\n The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'. Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models. Parameters ---------- config : string Full path of the config.yaml file as a string. videos: list of strings Name of each video, one per viewpoint. Must be in the same order that it was in for training projection_matrices: list of arrays Projection matrix for each viewpoint. Each is a 3x4 array multiview_step: 1 or 2. Indicates whether network was trained with train_multiview_network_step_1 or train_multiview_network_step_2 Shuffles: list, optional List of integers specifying the shuffle indices of the training dataset. The default is [1] plotting: bool, optional Plots the predictions on the train and test images. The default is ``False``; if provided it must be either ``True`` or ``False`` show_errors: bool, optional Display train and test errors. The default is `True`` comparisonbodyparts: list of bodyparts, Default is "all". The average error will be computed for those body parts only (Has to be a subset of the body parts). gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None. See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries Examples -------- If you do not want to plot >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', shuffle=[1]) -------- If you want to plot >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True) """ import os from skimage import io import skimage.color from deeplabcut.pose_estimation_tensorflow.nnet import predict as ptf_predict from deeplabcut.pose_estimation_tensorflow.config import load_config from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input from deeplabcut.utils import auxiliaryfunctions, visualization import tensorflow as tf if 'TF_CUDNN_USE_AUTOTUNE' in os.environ: del os.environ['TF_CUDNN_USE_AUTOTUNE'] #was potentially set during training tf.reset_default_graph() os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # # tf.logging.set_verbosity(tf.logging.WARN) start_path=os.getcwd() # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) if gputouse is not None: #gpu selectinon os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse) # Loading human annotatated data trainingsetfolder=auxiliaryfunctions.GetTrainingSetFolder(cfg) Datas = [pd.read_hdf(os.path.join(cfg['project_path'], 'labeled-data', video, 'CollectedData_'+cfg['scorer']+'.h5'), 'df_with_missing') for video in videos] # Get list of body parts to evaluate network for comparisonbodyparts=auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(cfg,comparisonbodyparts) # Make folder for evaluation auxiliaryfunctions.attempttomakefolder(str(cfg["project_path"]+"/evaluation-results/")) for shuffle in Shuffles: for trainFraction in cfg["TrainingFraction"]: ################################################## # Load and setup CNN part detector ################################################## datafn,metadatafn=auxiliaryfunctions.GetDataandMetaDataFilenames(trainingsetfolder,trainFraction,shuffle,cfg) modelfolder=os.path.join(cfg["project_path"],str(auxiliaryfunctions.GetModelFolder(trainFraction,shuffle,cfg))) path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml' # Load meta data metadatas = [] for video in videos: m = ('-'+video).join(os.path.splitext(metadatafn)) data, trainIndices, testIndices, trainFraction=auxiliaryfunctions.LoadMetadata(os.path.join(cfg["project_path"],m)) metadatas.append(data) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError("It seems the model for shuffle %s and trainFraction %s does not exist."%(shuffle,trainFraction)) #change batch size, if it was edited during analysis! dlc_cfg['batch_size']=1 #in case this was edited for analysis. #Create folder structure to store results. evaluationfolder=os.path.join(cfg["project_path"],str(auxiliaryfunctions.GetEvaluationFolder(trainFraction,shuffle,cfg))) auxiliaryfunctions.attempttomakefolder(evaluationfolder,recursive=True) #path_train_config = modelfolder / 'train' / 'pose_cfg.yaml' dlc_cfg.multiview_step = multiview_step dlc_cfg.projection_matrices = projection_matrices # Check which snapshots are available and sort them by # iterations Snapshots = np.array([fn.split('.')[0]for fn in os.listdir(os.path.join(str(modelfolder), 'train'))if "index" in fn]) try: #check if any where found? Snapshots[0] except IndexError: raise FileNotFoundError("Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."%(shuffle,trainFraction)) increasing_indices = np.argsort([int(m.split('-')[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if snapshot_index is not None: snapindices = [i for i in range(len(Snapshots)) if int(Snapshots[i].split('-')[1].split('.')[0])==snapshot_index] elif cfg["snapshotindex"] == -1: snapindices = [-1] elif cfg["snapshotindex"] == "all": snapindices = range(len(Snapshots)) elif cfg["snapshotindex"]<len(Snapshots): snapindices=[cfg["snapshotindex"]] else: print("Invalid choice, only -1 (last), any integer up to last, or all (as string)!") final_result=[] ################################################## # Compute predictions over images ################################################## for snapindex in snapindices: dlc_cfg['init_weights'] = os.path.join(str(modelfolder),'train',Snapshots[snapindex]) #setting weights to corresponding snapshot. trainingsiterations = (dlc_cfg['init_weights'].split(os.sep)[-1]).split('-')[-1] #read how many training siterations that corresponds to. #name for deeplabcut net (based on its parameters) DLCscorer = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations) print("Running ", DLCscorer, " with # of trainingiterations:", trainingsiterations) resultsfilename=os.path.join(str(evaluationfolder),DLCscorer + '-' + Snapshots[snapindex]+ '.h5') try: DataMachine = pd.read_hdf(resultsfilename,'df_with_missing') print("This net has already been evaluated!") except FileNotFoundError: # Specifying state of model (snapshot / training state) sess, inputs, outputs = ptf_predict.setup_pose_prediction(dlc_cfg) Numimages = len(Datas[0].index) PredicteDatas = np.zeros((Numimages,len(Datas), 3 * len(dlc_cfg['all_joints_names']))) imagesizes = [] print("Analyzing data...") if multiview_step == 1: for imageindex in tqdm(range(len(Datas[0].index))): imagenames = [Data.index[imageindex] for Data in Datas] images = [io.imread(os.path.join(cfg['project_path'],imagename),mode='RGB') for imagename in imagenames] images = [skimage.color.gray2rgb(image) for image in images] image_batch = images imagesizes.append([image.shape for image in images]) # Compute prediction with the CNN outputs_np = sess.run(outputs, feed_dict={inputs: image_batch}) scmap, locref = ptf_predict.extract_cnn_output(outputs_np, dlc_cfg) # Extract maximum scoring location from the heatmap, assume 1 person pose = ptf_predict.argmax_pose_predict(scmap, locref, dlc_cfg.stride) PredicteDatas[imageindex] = pose.reshape([pose.shape[0], -1]) # NOTE: thereby cfg_test['all_joints_names'] should be same order as bodyparts! sess.close() #closes the current tf session index = pd.MultiIndex.from_product( [[DLCscorer], dlc_cfg['all_joints_names'], ['x', 'y', 'likelihood']], names=['scorer', 'bodyparts', 'coords']) # Saving results for i, video in enumerate(videos): print('Evaluating 2D predictions on video %s'%video) Data = Datas[i] DataMachine = pd.DataFrame(PredicteDatas[:,i], columns=index, index=Data.index.values) r = ('-'+video).join(os.path.splitext(resultsfilename)) DataMachine.to_hdf(r,'df_with_missing',format='table',mode='w') print("Done and results stored for snapshot: ", Snapshots[snapindex]) DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T RMSE,RMSEpcutoff = pairwisedistances(DataCombined, cfg["scorer"], DLCscorer,cfg["pcutoff"],comparisonbodyparts) testerror = np.nanmean(RMSE.iloc[testIndices].values.flatten()) trainerror = np.nanmean(RMSE.iloc[trainIndices].values.flatten()) testerrorpcutoff = np.nanmean(RMSEpcutoff.iloc[testIndices].values.flatten()) trainerrorpcutoff = np.nanmean(RMSEpcutoff.iloc[trainIndices].values.flatten()) results = [trainingsiterations,int(100 * trainFraction),shuffle,np.round(trainerror,2),np.round(testerror,2),cfg["pcutoff"],np.round(trainerrorpcutoff,2), np.round(testerrorpcutoff,2)] final_result.append(results) if show_errors == True: print("Results for",trainingsiterations," training iterations:", int(100 * trainFraction), shuffle, "train error:",np.round(trainerror,2), "pixels. Test error:", np.round(testerror,2)," pixels.") print("With pcutoff of", cfg["pcutoff"]," train error:",np.round(trainerrorpcutoff,2), "pixels. Test error:", np.round(testerrorpcutoff,2), "pixels") print("Thereby, the errors are given by the average distances between the labels by DLC and the scorer.") if plotting == True: print("Plotting...") colors = visualization.get_cmap(len(comparisonbodyparts),name=cfg['colormap']) foldername=os.path.join(str(evaluationfolder),'LabeledImages_' + DLCscorer + '_' + Snapshots[snapindex]+'_'+video) auxiliaryfunctions.attempttomakefolder(foldername) NumFrames=np.size(DataCombined.index) for ind in np.arange(NumFrames): visualization.PlottingandSaveLabeledFrame(DataCombined,ind,trainIndices,cfg,colors,comparisonbodyparts,DLCscorer,foldername) # get predictions in homogeneous pixel coordinates # pixel coordinates have (0,0) in the top-left, and the bottom-right coordinate is (h,w) predictions = PredicteDatas.reshape(Numimages, len(Datas), len(dlc_cfg['all_joints_names']), 3) scores = np.copy(predictions[:,:,:,2]) predictions[:,:,:,2] = 1.0 # homogeneous coordinates; (x,y,1). Top-left corner is (-width/2, -height/2, 1); Bottom-right corner is opposite. Shape is num_images x num_views x num_joints x 3 num_ims, num_views, num_joints, _ = predictions.shape # get labels in homogeneous pixel coordinates labels = np.array([Data.values.reshape(num_ims, num_joints, 2) for Data in Datas]) # num_views x num_ims x num_joints x (x,y) labels = np.transpose(labels, [1, 2, 0, 3]) # num_ims x num_joints x num_views x (x,y) labels = np.concatenate([labels, np.ones([num_ims, num_joints, num_views, 1])], axis=3) # solve linear system to get labels in 3D # helpful explanation of equation found on pg 5 here: https://hal.inria.fr/inria-00524401/PDF/Sturm-cvpr05.pdf labs = labels.reshape([num_ims * num_joints, num_views, 3]).astype(np.float) confidences = ~np.isnan(np.sum(labs, axis=2)) valid = np.sum(~np.isnan(np.sum(labs, axis=2)), axis=1) >= 2 labs[~confidences] = 0 labels3d = project_3d(projection_matrices, labs, confidences=confidences) labels3d[~valid] = np.nan labels3d = labels3d.reshape([num_ims, num_joints, 3]) # solve linear system to get 3D predictions preds = np.transpose(predictions, [0, 2, 1, 3]) # num_ims x num_joints x num_views x 3 preds = preds.reshape([num_ims*num_joints, num_views, 3]) preds3d = project_3d(projection_matrices, preds) preds3d = preds3d.reshape([num_ims, num_joints, 3]) # try it with confidence weighting scores = np.transpose(scores, [0, 2, 1]) # num_images x num_joints x num_views scores = np.reshape(scores, [num_ims*num_joints, num_views]) preds3d_weighted = project_3d(projection_matrices, preds, confidences=scores) preds3d_weighted = preds3d_weighted.reshape([num_ims, num_joints, 3]) # try it with the pcutoff scores2 = np.copy(scores) scores2[scores2 < cfg["pcutoff"]] = 0 preds3d_weighted_cutoff = project_3d(projection_matrices, preds, confidences=scores2) preds3d_weighted_cutoff = preds3d_weighted_cutoff.reshape([num_ims, num_joints, 3]) print("\n\n3D errors:") RMSE_train = np.nanmean(np.nansum((preds3d[trainIndices] - labels3d[trainIndices])**2, axis=2)**0.5) RMSE_test = np.nanmean(np.nansum((preds3d[testIndices] - labels3d[testIndices])**2, axis=2)**0.5) RMSE_train_weighted = np.nanmean(np.nansum((preds3d_weighted[trainIndices] - labels3d[trainIndices])**2, axis=2)**0.5) RMSE_test_weighted = np.nanmean(np.nansum((preds3d_weighted[testIndices] - labels3d[testIndices])**2, axis=2)**0.5) RMSE_train_weighted_cutoff = np.nanmean(np.nansum((preds3d_weighted_cutoff[trainIndices] - labels3d[trainIndices])**2, axis=2)**0.5) RMSE_test_weighted_cutoff = np.nanmean(np.nansum((preds3d_weighted_cutoff[testIndices] - labels3d[testIndices])**2, axis=2)**0.5) print("RMSE train: ", RMSE_train) print("RMSE test: ", RMSE_test) print("RMSE train weighted: ", RMSE_train_weighted) print("RMSE test weighted: ", RMSE_test_weighted) print("RMSE train weighted cutoff: ", RMSE_train_weighted_cutoff) print("RMSE test weighted cutoff: ", RMSE_test_weighted_cutoff) tail = np.nansum((preds3d_weighted - labels3d)**2, axis=2)**0.5 tail = np.sort(tail[~np.isnan(tail)]) tail = tail[-10:] print('10 worst predictions: ', tail) tf.reset_default_graph() elif multiview_step==2: preds3d = [] for imageindex in tqdm(range(len(Datas[0].index))): imagenames = [Data.index[imageindex] for Data in Datas] images = [io.imread(os.path.join(cfg['project_path'],imagename),mode='RGB') for imagename in imagenames] images = [skimage.color.gray2rgb(image) for image in images] image_batch = images # Compute prediction with the CNN outputs_np = sess.run(outputs, feed_dict={inputs: image_batch}) pred_3d = outputs_np[2] preds3d.append(pred_3d) sess.close() #closes the current tf session preds3d = np.array(preds3d) # num_ims x num_joints x (x,y,z) num_ims, num_joints = preds3d.shape[:2] num_views = dlc_cfg.num_views # get labels in homogeneous pixel coordinates labels = np.array([Data.values.reshape(num_ims, num_joints, 2) for Data in Datas]) # num_views x num_ims x num_joints x (x,y) labels = np.transpose(labels, [1, 2, 0, 3]) # num_ims x num_joints x num_views x (x,y) labels = np.concatenate([labels, np.ones([num_ims, num_joints, num_views, 1])], axis=3) # solve linear system to get labels in 3D # helpful explanation of equation found on pg 5 here: https://hal.inria.fr/inria-00524401/PDF/Sturm-cvpr05.pdf labs = labels.reshape([num_ims * num_joints, num_views, 3]).astype(np.float) confidences = ~np.isnan(np.sum(labs, axis=2)) valid = np.sum(~np.isnan(np.sum(labs, axis=2)), axis=1) >= 2 labs[~confidences] = 0 labels3d = project_3d(projection_matrices, labs, confidences=confidences) labels3d[~valid] = np.nan labels3d = labels3d.reshape([num_ims, num_joints, 3]) print("\n\n3D errors (units are determined by projection matrices):") RMSE_train = np.nanmean(np.nansum((preds3d[trainIndices] - labels3d[trainIndices])**2, axis=2)**0.5) RMSE_test = np.nanmean(np.nansum((preds3d[testIndices] - labels3d[testIndices])**2, axis=2)**0.5) print("RMSE train: ", RMSE_train) print("RMSE test: ", RMSE_test) tail = np.nansum((preds3d- labels3d)**2, axis=2)**0.5 tail = np.sort(tail[~np.isnan(tail)]) tail = tail[-10:] print('10 worst predictions: ', tail) tf.reset_default_graph() else: print('invalid multiview_step given') return make_results_file(final_result,evaluationfolder,DLCscorer) print("The network is evaluated and the results are stored in the subdirectory 'evaluation_results'.") print("If it generalizes well, choose the best model for prediction and update the config file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos.") print("Otherwise consider retraining the network (see DeepLabCut workflow Fig 2)") #returning to intial folder os.chdir(str(start_path))
def return_evaluate_network_data( config, shuffle=0, trainingsetindex=0, comparisonbodyparts="all", Snapindex=None, rescale=False, fulldata=False, show_errors=True, modelprefix="", returnjustfns=True, ): """ Returns the results for (previously evaluated) network. deeplabcut.evaluate_network(..) Returns list of (per model): [trainingsiterations,trainfraction,shuffle,trainerror,testerror,pcutoff,trainerrorpcutoff,testerrorpcutoff,Snapshots[snapindex],scale,net_type] If fulldata=True, also returns (the complete annotation and prediction array) Returns list of: (DataMachine, Data, data, trainIndices, testIndices, trainFraction, DLCscorer,comparisonbodyparts, cfg, Snapshots[snapindex]) ---------- config : string Full path of the config.yaml file as a string. shuffle: integer integers specifying shuffle index of the training dataset. The default is 0. trainingsetindex: int, optional Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This variable can also be set to "all". comparisonbodyparts: list of bodyparts, Default is "all". The average error will be computed for those body parts only (Has to be a subset of the body parts). rescale: bool, default False Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the original size! Examples -------- If you do not want to plot >>> deeplabcut._evaluate_network_data('/analysis/project/reaching-task/config.yaml', shuffle=[1]) -------- If you want to plot >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True) """ import os from deeplabcut.pose_estimation_tensorflow.config import load_config from deeplabcut.utils import auxiliaryfunctions start_path = os.getcwd() # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) # Data=pd.read_hdf(os.path.join(cfg["project_path"],str(trainingsetfolder),'CollectedData_' + cfg["scorer"] + '.h5'),'df_with_missing') # Get list of body parts to evaluate network for comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser( cfg, comparisonbodyparts) ################################################## # Load data... ################################################## trainFraction = cfg["TrainingFraction"][trainingsetindex] datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" # Load meta data data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction)) ########################### RESCALING (to global scale) if rescale == True: scale = dlc_cfg["global_scale"] print("Rescaling Data to ", scale) Data = (pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", )) * scale) else: scale = 1 Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", )) evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetEvaluationFolder(trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) # Check which snapshots are available and sort them by # iterations Snapshots = np.array([ fn.split(".")[0] for fn in os.listdir(os.path.join(str(modelfolder), "train")) if "index" in fn ]) if len(Snapshots) == 0: print( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction)) snapindices = [] else: increasing_indices = np.argsort( [int(m.split("-")[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if Snapindex == None: Snapindex = cfg["snapshotindex"] if Snapindex == -1: snapindices = [-1] elif Snapindex == "all": snapindices = range(len(Snapshots)) elif Snapindex < len(Snapshots): snapindices = [Snapindex] else: print( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) DATA = [] results = [] resultsfns = [] for snapindex in snapindices: dlc_cfg["init_weights"] = os.path.join( str(modelfolder), "train", Snapshots[snapindex]) # setting weights to corresponding snapshot. trainingsiterations = (dlc_cfg["init_weights"].split( os.sep)[-1]).split("-")[ -1] # read how many training siterations that corresponds to. # name for deeplabcut net (based on its parameters) DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName( cfg, shuffle, trainFraction, trainingsiterations, modelprefix=modelprefix) if not returnjustfns: print( "Retrieving ", DLCscorer, " with # of trainingiterations:", trainingsiterations, ) ( notanalyzed, resultsfilename, DLCscorer, ) = auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder), DLCscorer, DLCscorerlegacy, Snapshots[snapindex]) # resultsfilename=os.path.join(str(evaluationfolder),DLCscorer + '-' + str(Snapshots[snapindex])+ '.h5') # + '-' + str(snapshot)+ ' #'-' + Snapshots[snapindex]+ '.h5') print(resultsfilename) resultsfns.append(resultsfilename) if not returnjustfns: if not notanalyzed and os.path.isfile( resultsfilename): # data exists.. DataMachine = pd.read_hdf(resultsfilename) DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T RMSE, RMSEpcutoff = pairwisedistances( DataCombined, cfg["scorer"], DLCscorer, cfg["pcutoff"], comparisonbodyparts, ) testerror = np.nanmean(RMSE.iloc[testIndices].values.flatten()) trainerror = np.nanmean( RMSE.iloc[trainIndices].values.flatten()) testerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[testIndices].values.flatten()) trainerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[trainIndices].values.flatten()) if show_errors == True: print( "Results for", trainingsiterations, " training iterations:", int(100 * trainFraction), shuffle, "train error:", np.round(trainerror, 2), "pixels. Test error:", np.round(testerror, 2), " pixels.", ) print( "With pcutoff of", cfg["pcutoff"], " train error:", np.round(trainerrorpcutoff, 2), "pixels. Test error:", np.round(testerrorpcutoff, 2), "pixels", ) print("Snapshot", Snapshots[snapindex]) r = [ trainingsiterations, int(100 * trainFraction), shuffle, np.round(trainerror, 2), np.round(testerror, 2), cfg["pcutoff"], np.round(trainerrorpcutoff, 2), np.round(testerrorpcutoff, 2), Snapshots[snapindex], scale, dlc_cfg["net_type"], ] results.append(r) else: print("Model not trained/evaluated!") if fulldata == True: DATA.append([ DataMachine, Data, data, trainIndices, testIndices, trainFraction, DLCscorer, comparisonbodyparts, cfg, evaluationfolder, Snapshots[snapindex], ]) os.chdir(start_path) if returnjustfns: return resultsfns else: if fulldata == True: return DATA, results else: return results
def evaluate_network(config, Shuffles=[1], plotting=None, show_errors=True, comparisonbodyparts="all", gputouse=None): """ Evaluates the network based on the saved models at different stages of the training network.\n The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'. Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models. Parameters ---------- config : string Full path of the config.yaml file as a string. Shuffles: list, optional List of integers specifying the shuffle indices of the training dataset. The default is [1] plotting: bool, optional Plots the predictions on the train and test images. The default is ``False``; if provided it must be either ``True`` or ``False`` show_errors: bool, optional Display train and test errors. The default is `True`` comparisonbodyparts: list of bodyparts, Default is "all". The average error will be computed for those body parts only (Has to be a subset of the body parts). gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None. See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries Examples -------- If you do not want to plot >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', shuffle=[1]) -------- If you want to plot >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True) """ import os from skimage import io import skimage.color from deeplabcut.pose_estimation_tensorflow.nnet import predict as ptf_predict from deeplabcut.pose_estimation_tensorflow.config import load_config from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input from deeplabcut.utils import auxiliaryfunctions, visualization import tensorflow as tf if 'TF_CUDNN_USE_AUTOTUNE' in os.environ: del os.environ[ 'TF_CUDNN_USE_AUTOTUNE'] #was potentially set during training vers = (tf.__version__).split('.') if int(vers[0]) == 1 and int(vers[1]) > 12: TF = tf.compat.v1 else: TF = tf TF.reset_default_graph() os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # # tf.logging.set_verbosity(tf.logging.WARN) start_path = os.getcwd() # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) if gputouse is not None: #gpu selectinon os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse) # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) Data = pd.read_hdf( os.path.join(cfg["project_path"], str(trainingsetfolder), 'CollectedData_' + cfg["scorer"] + '.h5'), 'df_with_missing') # Get list of body parts to evaluate network for comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser( cfg, comparisonbodyparts) # Make folder for evaluation auxiliaryfunctions.attempttomakefolder( str(cfg["project_path"] + "/evaluation-results/")) for shuffle in Shuffles: for trainFraction in cfg["TrainingFraction"]: ################################################## # Load and setup CNN part detector ################################################## datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg))) path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml' # Load meta data data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction)) #change batch size, if it was edited during analysis! dlc_cfg['batch_size'] = 1 #in case this was edited for analysis. #Create folder structure to store results. evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetEvaluationFolder( trainFraction, shuffle, cfg))) auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True) #path_train_config = modelfolder / 'train' / 'pose_cfg.yaml' # Check which snapshots are available and sort them by # iterations Snapshots = np.array([ fn.split('.')[0] for fn in os.listdir(os.path.join(str(modelfolder), 'train')) if "index" in fn ]) try: #check if any where found? Snapshots[0] except IndexError: raise FileNotFoundError( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction)) increasing_indices = np.argsort( [int(m.split('-')[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if cfg["snapshotindex"] == -1: snapindices = [-1] elif cfg["snapshotindex"] == "all": snapindices = range(len(Snapshots)) elif cfg["snapshotindex"] < len(Snapshots): snapindices = [cfg["snapshotindex"]] else: print( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) final_result = [] ################################################## # Compute predictions over images ################################################## for snapindex in snapindices: dlc_cfg['init_weights'] = os.path.join( str(modelfolder), 'train', Snapshots[snapindex] ) #setting weights to corresponding snapshot. trainingsiterations = ( dlc_cfg['init_weights'].split(os.sep)[-1] ).split( '-' )[-1] #read how many training siterations that corresponds to. #name for deeplabcut net (based on its parameters) DLCscorer = auxiliaryfunctions.GetScorerName( cfg, shuffle, trainFraction, trainingsiterations) print("Running ", DLCscorer, " with # of trainingiterations:", trainingsiterations) resultsfilename = os.path.join( str(evaluationfolder), DLCscorer + '-' + Snapshots[snapindex] + '.h5') try: DataMachine = pd.read_hdf(resultsfilename, 'df_with_missing') print("This net has already been evaluated!") except FileNotFoundError: # Specifying state of model (snapshot / training state) sess, inputs, outputs = ptf_predict.setup_pose_prediction( dlc_cfg) Numimages = len(Data.index) PredicteData = np.zeros( (Numimages, 3 * len(dlc_cfg['all_joints_names']))) print("Analyzing data...") for imageindex, imagename in tqdm(enumerate(Data.index)): image = io.imread(os.path.join(cfg['project_path'], imagename), mode='RGB') image = skimage.color.gray2rgb(image) image_batch = data_to_input(image) # Compute prediction with the CNN outputs_np = sess.run(outputs, feed_dict={inputs: image_batch}) scmap, locref = ptf_predict.extract_cnn_output( outputs_np, dlc_cfg) # Extract maximum scoring location from the heatmap, assume 1 person pose = ptf_predict.argmax_pose_predict( scmap, locref, dlc_cfg.stride) PredicteData[imageindex, :] = pose.flatten( ) # NOTE: thereby cfg_test['all_joints_names'] should be same order as bodyparts! sess.close() #closes the current tf session index = pd.MultiIndex.from_product( [[DLCscorer], dlc_cfg['all_joints_names'], ['x', 'y', 'likelihood']], names=['scorer', 'bodyparts', 'coords']) # Saving results DataMachine = pd.DataFrame(PredicteData, columns=index, index=Data.index.values) DataMachine.to_hdf(resultsfilename, 'df_with_missing', format='table', mode='w') print("Done and results stored for snapshot: ", Snapshots[snapindex]) DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T RMSE, RMSEpcutoff = pairwisedistances( DataCombined, cfg["scorer"], DLCscorer, cfg["pcutoff"], comparisonbodyparts) testerror = np.nanmean( RMSE.iloc[testIndices].values.flatten()) trainerror = np.nanmean( RMSE.iloc[trainIndices].values.flatten()) testerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[testIndices].values.flatten()) trainerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[trainIndices].values.flatten()) results = [ trainingsiterations, int(100 * trainFraction), shuffle, np.round(trainerror, 2), np.round(testerror, 2), cfg["pcutoff"], np.round(trainerrorpcutoff, 2), np.round(testerrorpcutoff, 2) ] final_result.append(results) if show_errors == True: print("Results for", trainingsiterations, " training iterations:", int(100 * trainFraction), shuffle, "train error:", np.round(trainerror, 2), "pixels. Test error:", np.round(testerror, 2), " pixels.") print("With pcutoff of", cfg["pcutoff"], " train error:", np.round(trainerrorpcutoff, 2), "pixels. Test error:", np.round(testerrorpcutoff, 2), "pixels") print( "Thereby, the errors are given by the average distances between the labels by DLC and the scorer." ) if plotting == True: print("Plotting...") colors = visualization.get_cmap( len(comparisonbodyparts), name=cfg['colormap']) foldername = os.path.join( str(evaluationfolder), 'LabeledImages_' + DLCscorer + '_' + Snapshots[snapindex]) auxiliaryfunctions.attempttomakefolder(foldername) NumFrames = np.size(DataCombined.index) for ind in np.arange(NumFrames): visualization.PlottingandSaveLabeledFrame( DataCombined, ind, trainIndices, cfg, colors, comparisonbodyparts, DLCscorer, foldername) TF.reset_default_graph() #print(final_result) make_results_file(final_result, evaluationfolder, DLCscorer) print( "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'." ) print( "If it generalizes well, choose the best model for prediction and update the config file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos." ) print( "Otherwise consider retraining the network (see DeepLabCut workflow Fig 2)" ) #returning to intial folder os.chdir(str(start_path))
def calculatepafdistancebounds(config, shuffle=0, trainingsetindex=0, modelprefix="", numdigits=0, onlytrain=False): """ Returns distances along paf edges in train/test data ---------- config : string Full path of the config.yaml file as a string. shuffle: integer integers specifying shuffle index of the training dataset. The default is 0. trainingsetindex: int, optional Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This variable can also be set to "all". numdigits: number of digits to round for distances. """ import os from deeplabcut.utils import auxiliaryfunctions, auxfun_multianimal from deeplabcut.pose_estimation_tensorflow.config import load_config # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) if cfg["multianimalproject"]: ( individuals, uniquebodyparts, multianimalbodyparts, ) = auxfun_multianimal.extractindividualsandbodyparts(cfg) # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) trainFraction = cfg["TrainingFraction"][trainingsetindex] datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) # Load meta data & annotations ( data, trainIndices, testIndices, trainFraction, ) = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", ))[cfg["scorer"]] path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" dlc_cfg = load_config(str(path_test_config)) # get the graph! partaffinityfield_graph = dlc_cfg["partaffinityfield_graph"] jointnames = [ dlc_cfg["all_joints_names"][i] for i in range(len(dlc_cfg["all_joints"])) ] path_inferencebounds_config = (Path(modelfolder) / "test" / "inferencebounds.yaml") inferenceboundscfg = {} for pi, edge in enumerate(partaffinityfield_graph): j1, j2 = jointnames[edge[0]], jointnames[edge[1]] ds_within = [] ds_across = [] for ind in individuals: for ind2 in individuals: if ind != "single" and ind2 != "single": if (ind, j1, "x") in Data.keys() and ( ind2, j2, "y", ) in Data.keys(): distances = (np.sqrt( (Data[ind, j1, "x"] - Data[ind2, j2, "x"])**2 + (Data[ind, j1, "y"] - Data[ind2, j2, "y"])**2) / dlc_cfg["stride"]) else: distances = None if distances is not None: if onlytrain: distances = distances.iloc[trainIndices] if ind == ind2: ds_within.extend(distances.values.flatten()) else: ds_across.extend(distances.values.flatten()) edgeencoding = str(edge[0]) + "_" + str(edge[1]) inferenceboundscfg[edgeencoding] = {} if len(ds_within) > 0: inferenceboundscfg[edgeencoding]["intra_max"] = str( round(np.nanmax(ds_within), numdigits)) inferenceboundscfg[edgeencoding]["intra_min"] = str( round(np.nanmin(ds_within), numdigits)) else: inferenceboundscfg[edgeencoding]["intra_max"] = str( 1e5) # large number (larger than any image diameter) inferenceboundscfg[edgeencoding]["intra_min"] = str(0) # NOTE: the inter-animal distances are currently not used, but are interesting to compare to intra_* if len(ds_across) > 0: inferenceboundscfg[edgeencoding]["inter_max"] = str( round(np.nanmax(ds_across), numdigits)) inferenceboundscfg[edgeencoding]["inter_min"] = str( round(np.nanmin(ds_across), numdigits)) else: inferenceboundscfg[edgeencoding]["inter_max"] = str( 1e5 ) # large number (larger than image diameters in typical experiments) inferenceboundscfg[edgeencoding]["inter_min"] = str(0) auxiliaryfunctions.write_plainconfig(str(path_inferencebounds_config), dict(inferenceboundscfg)) return inferenceboundscfg else: print("You might as well bring owls to Athens.") return {}
def create_training_dataset(config, num_shuffles=1, Shuffles=None, windows2linux=False): """ Creates a training dataset. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL]Use the function 'add_new_video' at any stage of the project to add more videos to the project. Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. Example -------- >>> deeplabcut.create_training_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_training_dataset('C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ from skimage import io import scipy.io as sio import deeplabcut import subprocess # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg['scorer'] project_path = cfg['project_path'] # TODO: fix training set folder!!! #trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) #Path concatenation OS platform independent #auxiliaryfunctions.attempttomakefolder(Path(os.path.join(project_path,str(trainingsetfolder))),recursive=True) #Data = merge_annotateddatasets(cfg,project_path,Path(os.path.join(project_path,trainingsetfolder)),windows2linux) #Data = Data[scorer] #extract labeled data #set model type. we will allow more in the future. if cfg['resnet'] == 50: net_type = 'resnet_' + str(cfg['resnet']) resnet_path = str( Path(deeplabcut.__file__).parents[0] / 'pose_estimation_tensorflow/models/pretrained/resnet_v1_50.ckpt') elif cfg['resnet'] == 101: net_type = 'resnet_' + str(cfg['resnet']) resnet_path = str( Path(deeplabcut.__file__).parents[0] / 'pose_estimation_tensorflow/models/pretrained/resnet_v1_101.ckpt') else: print( "Currently only ResNet 50 or 101 supported, please change 'resnet' entry in config.yaml!" ) num_shuffles = -1 #thus the loop below is empty... if not Path(resnet_path).is_file(): """ Downloads the ImageNet pretrained weights for ResNet. """ start = os.getcwd() os.chdir(str(Path(resnet_path).parents[0])) print("Downloading the pretrained model (ResNets)....") subprocess.call("download.sh", shell=True) os.chdir(start) if Shuffles == None: Shuffles = range(1, num_shuffles + 1, 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] #images = [] num_images = 0 data = [] for video in cfg['video_sets']: imgs_path = os.path.join(project_path, 'pretrain/training-datasets', Path(video).stem) images = [img for img in os.listdir(imgs_path) if img.endswith(".png")] num_images += len(images) for image in images: H = {} im = io.imread(os.path.join(imgs_path, image)) H['image'] = os.path.join('pretrain/training-datasets', Path(video).stem, image) if np.ndim(im) == 3: H['size'] = np.array( [np.shape(im)[2], np.shape(im)[0], np.shape(im)[1]]) else: # print "Grayscale!" H['size'] = np.array([1, np.shape(im)[0], np.shape(im)[1]]) data.append(H) ################################################################################ # Saving data file (convert to training file for deeper cut (*.mat)) ################################################################################ trainFraction = cfg['TrainingFraction'][0] data_path = os.path.join(project_path, 'pretrain/training-datasets') datafilename, metadatafilename = auxiliaryfunctions.GetDataandMetaDataFilenames( data_path, trainFraction, Shuffles[0], cfg) trainIndexes, testIndexes = SplitTrials(range(num_images), trainFraction) auxiliaryfunctions.SaveMetadata(metadatafilename, data, trainIndexes, testIndexes, trainFraction) DTYPE = [('image', 'O'), ('size', 'O')] MatlabData = np.array([(np.array( [data[item]['image']], dtype='U'), np.array([data[item]['size']])) for item in range(len(data))], dtype=DTYPE) sio.savemat(os.path.join(data_path, datafilename), {'dataset': MatlabData}) modelfoldername = Path('pretrain/dlc-models/trainset') #modelfoldername = auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder(Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + '/' + '/train') auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + '/' + '/test') path_train_config = str( os.path.join(cfg['project_path'], Path(modelfoldername), 'train', 'pretrain_pose_cfg.yaml')) path_test_config = str( os.path.join(cfg['project_path'], Path(modelfoldername), 'test', 'pretrain_pose_cfg.yaml')) #str(cfg['proj_path']+'/'+Path(modelfoldername) / 'test' / 'pose_cfg.yaml') items2change = { "dataset": datafilename, "metadataset": metadatafilename, "init_weights": resnet_path, "project_path": str(cfg['project_path']), "net_type": net_type } defaultconfigfile = str( Path(config).parents[0].parents[0] / 'pretrain_pose_cfg.yaml') trainingdata = MakeTrain_pose_yaml(items2change, path_train_config, defaultconfigfile) keys2save = ["dataset", "net_type", 'init_weights', 'global_scale'] MakeTest_pose_yaml(trainingdata, keys2save, path_test_config) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" )