コード例 #1
0
ファイル: benchmark.py プロジェクト: njzjz/deepmdbenchmark
    def __init__(self):
        # setup
        with open(os.path.join(os.path.dirname(__file__),
                               'water_se_a.json')) as fp:
            jdata = json.load(fp)
        self.run_opt = RunOptions(None)
        self.run_opt.verbose = False
        self.model = NNPTrainer(jdata, run_opt=self.run_opt)
        rcut = self.model.model.get_rcut()
        type_map = self.model.model.get_type_map()
        systems = [os.path.join(os.path.dirname(__file__), 'data')]
        set_pfx = jdata['training']['set_prefix']
        seed = jdata['training']['seed']

        np.random.seed(seed)
        batch_size = jdata['training']['batch_size']
        test_size = jdata['training']['numb_test']
        self.data = DeepmdDataSystem(systems,
                                     batch_size,
                                     test_size,
                                     rcut,
                                     set_prefix=set_pfx,
                                     run_opt=self.run_opt,
                                     type_map=type_map)
        self.data.add_dict(data_requirement)
        self.model.build(self.data)
        self.model._init_sess_serial()

        cur_batch = self.model.sess.run(self.model.global_step)
        self.cur_batch = cur_batch
コード例 #2
0
ファイル: benchmark.py プロジェクト: njzjz/deepmdbenchmark
class Benchmark:
    def __init__(self):
        # setup
        with open(os.path.join(os.path.dirname(__file__),
                               'water_se_a.json')) as fp:
            jdata = json.load(fp)
        self.run_opt = RunOptions(None)
        self.run_opt.verbose = False
        self.model = NNPTrainer(jdata, run_opt=self.run_opt)
        rcut = self.model.model.get_rcut()
        type_map = self.model.model.get_type_map()
        systems = [os.path.join(os.path.dirname(__file__), 'data')]
        set_pfx = jdata['training']['set_prefix']
        seed = jdata['training']['seed']

        np.random.seed(seed)
        batch_size = jdata['training']['batch_size']
        test_size = jdata['training']['numb_test']
        self.data = DeepmdDataSystem(systems,
                                     batch_size,
                                     test_size,
                                     rcut,
                                     set_prefix=set_pfx,
                                     run_opt=self.run_opt,
                                     type_map=type_map)
        self.data.add_dict(data_requirement)
        self.model.build(self.data)
        self.model._init_sess_serial()

        cur_batch = self.model.sess.run(self.model.global_step)
        self.cur_batch = cur_batch

    def train_step(self):
        batch_data = self.data.get_batch(sys_weights=self.model.sys_weights)
        feed_dict_batch = {}
        for kk in batch_data.keys():
            if kk == 'find_type' or kk == 'type':
                continue
            if 'find_' in kk:
                feed_dict_batch[self.model.place_holders[kk]] = batch_data[kk]
            else:
                feed_dict_batch[self.model.place_holders[kk]] = np.reshape(
                    batch_data[kk], [-1])
        for ii in ['type']:
            feed_dict_batch[self.model.place_holders[ii]] = np.reshape(
                batch_data[ii], [-1])
        for ii in ['natoms_vec', 'default_mesh']:
            feed_dict_batch[self.model.place_holders[ii]] = batch_data[ii]
        feed_dict_batch[self.model.place_holders['is_training']] = True

        self.model.sess.run([self.model.train_op],
                            feed_dict=feed_dict_batch,
                            options=None,
                            run_metadata=None)
        self.model.sess.run(self.model.global_step)
コード例 #3
0
    def _setUp(self):
        args = Args()
        run_opt = RunOptions(args, False)
        with open (args.INPUT, 'r') as fp:
           jdata = json.load (fp)

        # init model
        model = NNPTrainer (jdata, run_opt = run_opt)
        rcut = model.model.get_rcut()

        # init data system
        systems = j_must_have(jdata['training'], 'systems')
        set_pfx = j_must_have(jdata['training'], 'set_prefix')
        batch_size = j_must_have(jdata['training'], 'batch_size')
        test_size = j_must_have(jdata['training'], 'numb_test')    
        data = DeepmdDataSystem(systems, 
                                batch_size, 
                                test_size, 
                                rcut, 
                                set_prefix=set_pfx)
        data.add_dict(data_requirement)

        # clear the default graph
        tf.reset_default_graph()

        # build the model with stats from the first system
        model.build (data)
        
        # freeze the graph
        with tf.Session() as sess:
            init_op = tf.global_variables_initializer()
            sess.run(init_op)
            graph = tf.get_default_graph()
            input_graph_def = graph.as_graph_def()
            nodes = "o_dipole,o_rmat,o_rmat_deriv,o_nlist,o_rij,descrpt_attr/rcut,descrpt_attr/ntypes,descrpt_attr/sel,descrpt_attr/ndescrpt,model_attr/tmap,model_attr/sel_type,model_attr/model_type"
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess,
                input_graph_def,
                nodes.split(",") 
            )
            output_graph = os.path.join(modifier_datapath, 'dipole.pb')
            with tf.gfile.GFile(output_graph, "wb") as f:
                f.write(output_graph_def.SerializeToString())
コード例 #4
0
def _do_work(jdata, run_opt):
    # init the model
    model = NNPTrainer (jdata, run_opt = run_opt)
    rcut = model.model.get_rcut()
    type_map = model.model.get_type_map()
    # init params and run options
    assert('training' in jdata)
    systems = j_must_have(jdata['training'], 'systems')
    set_pfx = j_must_have(jdata['training'], 'set_prefix')
    numb_sys = len(systems)
    seed = None
    if 'seed' in jdata['training'].keys() : seed = jdata['training']['seed']
    if seed is not None:
       seed = seed % (2**32)
    np.random.seed (seed)
    batch_size = j_must_have(jdata['training'], 'batch_size')
    test_size = j_must_have(jdata['training'], 'numb_test')
    stop_batch = j_must_have(jdata['training'], 'stop_batch')
    if len(type_map) == 0:
       # empty type_map
       ipt_type_map = None
    else:
       ipt_type_map = type_map
    data = DeepmdDataSystem(systems, batch_size, test_size, rcut, set_prefix=set_pfx, run_opt=run_opt, type_map = ipt_type_map)
    data.add_dict(data_requirement)
    # build the model with stats from the first system
    model.build (data)
    # train the model with the provided systems in a cyclic way
    start_time = time.time()
    cur_batch = 0
    model.train (data, stop_batch)
    end_time = time.time()
    run_opt.message("finished training\nwall time: %.3f s" % (end_time-start_time))
コード例 #5
0
def _do_work(jdata, run_opt):
    # init the model
    model = NNPTrainer(jdata, run_opt=run_opt)
    rcut = model.model.get_rcut()
    type_map = model.model.get_type_map()
    # init params and run options
    assert ('training' in jdata)
    systems = j_must_have(jdata['training'], 'systems')
    if type(systems) == str:
        systems = expand_sys_str(systems)
    set_pfx = j_must_have(jdata['training'], 'set_prefix')
    seed = None
    if 'seed' in jdata['training'].keys(): seed = jdata['training']['seed']
    if seed is not None:
        seed = seed % (2**32)
    np.random.seed(seed)
    batch_size = j_must_have(jdata['training'], 'batch_size')
    test_size = j_must_have(jdata['training'], 'numb_test')
    stop_batch = j_must_have(jdata['training'], 'stop_batch')
    sys_probs = jdata['training'].get('sys_probs')
    auto_prob_style = jdata['training'].get('auto_prob_style', 'prob_sys_size')
    if len(type_map) == 0:
        # empty type_map
        ipt_type_map = None
    else:
        ipt_type_map = type_map
    # data modifier
    modifier = None
    modi_data = jdata['model'].get("modifier", None)
    if modi_data is not None:
        if modi_data['type'] == 'dipole_charge':
            modifier = DipoleChargeModifier(modi_data['model_name'],
                                            modi_data['model_charge_map'],
                                            modi_data['sys_charge_map'],
                                            modi_data['ewald_h'],
                                            modi_data['ewald_beta'])
        else:
            raise RuntimeError('unknown modifier type ' +
                               str(modi_data['type']))
    # init data
    data = DeepmdDataSystem(systems,
                            batch_size,
                            test_size,
                            rcut,
                            set_prefix=set_pfx,
                            type_map=ipt_type_map,
                            modifier=modifier)
    data.print_summary(run_opt,
                       sys_probs=sys_probs,
                       auto_prob_style=auto_prob_style)
    data.add_dict(data_requirement)
    # build the model with stats from the first system
    model.build(data, stop_batch)
    # train the model with the provided systems in a cyclic way
    start_time = time.time()
    model.train(data)
    end_time = time.time()
    run_opt.message("finished training\nwall time: %.3f s" %
                    (end_time - start_time))