def generator(model, latent_var, depth=1, initial_size=4, reuse=False, transition=False, alpha_transition=0, name=None): """ """ with tf.variable_scope(name) as scope: convs = [] if reuse: scope.reuse_variables() convs += [tf.reshape(latent_var, [tf.shape(latent_var)[0]] + [1] * model.dim + [model.latent_size])] # TODO: refactor the padding on this step. Or replace with a dense layer? convs[-1] = DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(0), kernel_size=(4,) * model.dim, stride_size=(1,) * model.dim, padding='Other', name='generator_n_conv_1_{}'.format(convs[-1].shape[1]), dim=model.dim)), model.dim) convs += [tf.reshape(convs[-1], [tf.shape(latent_var)[0]] + [initial_size] * model.dim + [model.get_filter_num(0)])] convs[-1] = DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(0), kernel_size=(5,) * model.dim, stride_size=(1,) * model.dim, name='generator_n_conv_2_{}'.format(convs[-1].shape[1]), dim=model.dim)), dim=model.dim) for i in range(depth): if i == depth - 1 and transition: #To RGB transition_conv = DnConv(convs[-1], output_dim=model.channels, kernel_size=(1,) * model.dim, stride_size=(1,) * model.dim, name='generator_y_rgb_conv_{}'.format(convs[-1].shape[1]), dim=model.dim) transition_conv = DnUpsampling(transition_conv, (2,) * model.dim, dim=model.dim) convs += [DnUpsampling(convs[-1], (2,) * model.dim, dim=model.dim)] convs[-1] = DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(i + 1), kernel_size=(5,) * model.dim, stride_size=(1,) * model.dim, name='generator_n_conv_1_{}'.format(convs[-1].shape[1]), dim=model.dim)), dim=model.dim) convs += [DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(i + 1), kernel_size=(5,) * model.dim, stride_size=(1,) * model.dim, name='generator_n_conv_2_{}'.format(convs[-1].shape[1]), dim=model.dim)), dim=model.dim)] #To RGB convs += [DnConv(convs[-1], output_dim=model.channels, kernel_size=(1,) * model.dim, stride_size=(1,) * model.dim, name='generator_y_rgb_conv_{}'.format(convs[-1].shape[1]), dim=model.dim)] if transition: convs[-1] = (1 - alpha_transition) * transition_conv + alpha_transition * convs[-1] return convs[-1]
def unet(model, input_tensor, backend='tensorflow'): from keras.layers.merge import concatenate left_outputs = [] for level in range(model.depth): filter_num = int(model.max_filter / (2 ** (model.depth - level)) / model.downsize_filters_factor) if level == 0: left_outputs += [DnConv(input_tensor, filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_downsampling_conv_{}_1'.format(level), backend=backend)] left_outputs[level] = DnConv(left_outputs[level], 2 * filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_downsampling_conv_{}_2'.format(level), backend=backend) else: left_outputs += [DnMaxPooling(left_outputs[level - 1], pool_size=model.pool_size, dim=model.dim, backend=backend)] left_outputs[level] = DnConv(left_outputs[level], filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_downsampling_conv_{}_1'.format(level), backend=backend) left_outputs[level] = DnConv(left_outputs[level], 2 * filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_downsampling_conv_{}_2'.format(level), backend=backend) if model.dropout is not None and model.dropout != 0: left_outputs[level] = DnDropout(model.dropout)(left_outputs[level]) if model.batch_norm: left_outputs[level] = DnBatchNormalization(left_outputs[level]) right_outputs = [left_outputs[model.depth - 1]] for level in range(model.depth): filter_num = int(model.max_filter / (2 ** (level)) / model.downsize_filters_factor) if level > 0: right_outputs += [DnUpsampling(right_outputs[level - 1], pool_size=model.pool_size, dim=model.dim, backend=backend)] right_outputs[level] = concatenate([right_outputs[level], left_outputs[model.depth - level - 1]], axis=model.dim + 1) right_outputs[level] = DnConv(right_outputs[level], filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_upsampling_conv_{}_1'.format(level), backend=backend) right_outputs[level] = DnConv(right_outputs[level], int(filter_num / 2), model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_upsampling_conv_{}_2'.format(level), backend=backend) else: continue if model.dropout is not None and model.dropout != 0: right_outputs[level] = DnDropout(model.dropout)(right_outputs[level]) if model.batch_norm: right_outputs[level] = DnBatchNormalization()(right_outputs[level]) output_layer = DnConv(right_outputs[level], 1, (1, ) * model.dim, stride_size=(1,) * model.dim, dim=model.dim, name='end_conv', backend=backend) # TODO: Brainstorm better way to specify outputs if model.input_tensor is not None: return output_layer return model.model
def generator(model, latent_var, depth=1, initial_size=(4, 4), max_size=None, reuse=False, transition=False, alpha_transition=0, name=None): """Summary Parameters ---------- model : TYPE Description latent_var : TYPE Description depth : int, optional Description initial_size : tuple, optional Description max_size : None, optional Description reuse : bool, optional Description transition : bool, optional Description alpha_transition : int, optional Description name : None, optional Description Returns ------- TYPE Description """ import tensorflow as tf with tf.variable_scope(name) as scope: convs = [] if reuse: scope.reuse_variables() convs += [tf.reshape(latent_var, [tf.shape(latent_var)[0]] + [1] * model.dim + [model.latent_size])] # TODO: refactor the padding on this step. Or replace with a dense layer? with tf.variable_scope('generator_n_conv_1_{}'.format(convs[-1].shape[1])): convs[-1] = DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(0), kernel_size=initial_size, stride_size=(1,) * model.dim, padding='Other', dim=model.dim)), model.dim) convs += [tf.reshape(convs[-1], [tf.shape(latent_var)[0]] + list(initial_size) + [model.get_filter_num(0)])] with tf.variable_scope('generator_n_conv_2_{}'.format(convs[-1].shape[1])): convs[-1] = DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(0), kernel_size=(5,) * model.dim, stride_size=(1,) * model.dim, dim=model.dim)), dim=model.dim) for i in range(depth): # Calculate Next Upsample Ratio if max_size is None: upsample_ratio = (2,) * model.dim else: upsample_ratio = [] for size_idx, size in enumerate(max_size): if size >= convs[-1].shape[size_idx + 1] * 2: upsample_ratio += [2] else: upsample_ratio += [1] upsample_ratio = tuple(upsample_ratio) # Upsampling, with conversion to RGB if necessary. if i == depth - 1 and transition: transition_conv = DnConv(convs[-1], output_dim=model.channels, kernel_size=(1,) * model.dim, stride_size=(1,) * model.dim, dim=model.dim, name='generator_y_rgb_conv_{}'.format(convs[-1].shape[1])) transition_conv = DnUpsampling(transition_conv, upsample_ratio, dim=model.dim) convs += [DnUpsampling(convs[-1], upsample_ratio, dim=model.dim)] # Convolutional blocks. TODO: Replace with block module. with tf.variable_scope('generator_n_conv_1_{}'.format(convs[-1].shape[1])): convs[-1] = DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(i + 1), kernel_size=(5,) * model.dim, stride_size=(1,) * model.dim, dim=model.dim)), dim=model.dim) with tf.variable_scope('generator_n_conv_2_{}'.format(convs[-1].shape[1])): convs += [DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(i + 1), kernel_size=(5,) * model.dim, stride_size=(1,) * model.dim, dim=model.dim)), dim=model.dim)] # Conversion to RGB convs += [DnConv(convs[-1], output_dim=model.channels, kernel_size=(1,) * model.dim, stride_size=(1,) * model.dim, name='generator_y_rgb_conv_{}'.format(convs[-1].shape[1]), dim=model.dim)] if transition: convs[-1] = (1 - alpha_transition) * transition_conv + alpha_transition * convs[-1] return convs[-1]
def build_model(self): """ A basic implementation of the U-Net proposed in https://arxiv.org/abs/1505.04597 TODO: specify optimizer Returns ------- Keras model or tensor If input_tensor is provided, this will return a tensor. Otherwise, this will return a Keras model. """ left_outputs = [] for level in range(self.depth): filter_num = int(self.max_filter / (2**(self.depth - level)) / self.downsize_filters_factor) if level == 0: left_outputs += [ DnConv(self.inputs, filter_num, kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_{}'.format(level, 0), backend='keras') ] if self.dropout is not None and self.dropout != 0: left_outputs[level] = Dropout(self.dropout)( left_outputs[level]) if self.batch_norm: left_outputs[level] = BatchNormalization()( left_outputs[level]) for block_num in range(1, self.num_blocks): left_outputs[level] = DnConv( left_outputs[level], filter_num * (self.block_filter_growth_ratio**block_num), kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_{}'.format( level, block_num), backend='keras') if self.dropout is not None and self.dropout != 0: left_outputs[level] = Dropout(self.dropout)( left_outputs[level]) if self.batch_norm: left_outputs[level] = BatchNormalization()( left_outputs[level]) else: left_outputs += [ DnMaxPooling(left_outputs[level - 1], pool_size=self.pool_size, dim=self.dim, backend='keras', padding=self.pooling_padding) ] for block_num in range(self.num_blocks): left_outputs[level] = DnConv( left_outputs[level], filter_num * (self.block_filter_growth_ratio**block_num), kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_{}'.format( level, block_num), backend='keras') if self.dropout is not None and self.dropout != 0: left_outputs[level] = Dropout(self.dropout)( left_outputs[level]) if self.batch_norm: left_outputs[level] = BatchNormalization()( left_outputs[level]) right_outputs = [left_outputs[self.depth - 1]] for level in range(self.depth): filter_num = int(self.max_filter / (2**(level)) / self.downsize_filters_factor) if level > 0: right_outputs += [ DnUpsampling(right_outputs[level - 1], pool_size=self.pool_size, dim=self.dim, backend='keras') ] if right_outputs[level].shape[1:-1] == left_outputs[ self.depth - level - 1].shape[1:-1]: right_outputs[level] = concatenate([ right_outputs[level], left_outputs[self.depth - level - 1] ], axis=self.dim + 1) else: # Very complex code to facilitate dimension errors arising from odd-numbered patches. # Is essentially same-padding, may have performance impacts on networks. # Very tentative. input_tensor = right_outputs[level] concatenate_tensor = left_outputs[self.depth - level - 1] padding = [] for dim in range(self.dim): padding += [ int(concatenate_tensor.shape[dim + 1]) - int(input_tensor.shape[dim + 1]) ] if len(padding) < self.dim: padding += [1] * self.dim - len(self.padding) lambda_dict = { 0: Lambda(lambda x: x[:, 0:padding[0], :, :, :]), 1: Lambda(lambda x: x[:, :, 0:padding[1], :, :]), 2: Lambda(lambda x: x[:, :, :, 0:padding[2], :]) } for dim in range(self.dim): tensor_slice = [slice(None)] + [ slice(padding[dim]) if i_dim == dim else slice(None) for i_dim in range(self.dim) ] + [slice(None)] # Causes JSON Serialization Error. # tensor_slice = Lambda(lambda x, tensor_slice=tensor_slice: x[tensor_slice])(input_tensor) tensor_slice = lambda_dict[dim](input_tensor) input_tensor = concatenate( [input_tensor, tensor_slice], axis=dim + 1) right_outputs[level] = concatenate( [input_tensor, concatenate_tensor], axis=self.dim + 1) for block_num in range(self.num_blocks): right_outputs[level] = DnConv( right_outputs[level], filter_num // (self.block_filter_growth_ratio**block_num), kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='upsampling_conv_{}_{}'.format(level, block_num), backend='keras') if self.dropout is not None and self.dropout != 0: right_outputs[level] = Dropout(self.dropout)( right_outputs[level]) if self.batch_norm: right_outputs[level] = BatchNormalization()( right_outputs[level]) self.output_layer = DnConv(right_outputs[level], self.output_channels, (1, ) * self.dim, stride_size=(1, ) * self.dim, dim=self.dim, name='end_conv', backend='keras') super(UNet, self).build_model()
def build_model(self): """ A basic implementation of the U-Net proposed in https://arxiv.org/abs/1505.04597 TODO: specify optimizer Returns ------- Keras model or tensor If input_tensor is provided, this will return a tensor. Otherwise, this will return a Keras model. """ left_outputs = [] for level in range(self.depth): filter_num = int(self.max_filter / (2**(self.depth - level)) / self.downsize_filters_factor) if level == 0: left_outputs += [ DnConv(self.inputs, filter_num, kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_{}'.format(level, 0), backend='keras') ] for block_num in range(1, self.num_blocks): left_outputs[level] = DnConv( left_outputs[level], filter_num * (self.block_filter_growth_ratio**block_num), kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_{}'.format( level, block_num), backend='keras') else: left_outputs += [ DnMaxPooling(left_outputs[level - 1], pool_size=self.pool_size, dim=self.dim, backend='keras') ] for block_num in range(self.num_blocks): left_outputs[level] = DnConv( left_outputs[level], filter_num * (self.block_filter_growth_ratio**block_num), kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_{}'.format( level, block_num), backend='keras') if self.dropout is not None and self.dropout != 0: left_outputs[level] = Dropout(self.dropout)( left_outputs[level]) if self.batch_norm: left_outputs[level] = BatchNormalization()(left_outputs[level]) right_outputs = [left_outputs[self.depth - 1]] for level in range(self.depth): filter_num = int(self.max_filter / (2**(level)) / self.downsize_filters_factor) if level > 0: right_outputs += [ DnUpsampling(right_outputs[level - 1], pool_size=self.pool_size, dim=self.dim, backend='keras') ] right_outputs[level] = concatenate([ right_outputs[level], left_outputs[self.depth - level - 1] ], axis=self.dim + 1) for block_num in range(self.num_blocks): right_outputs[level] = DnConv( right_outputs[level], filter_num // (self.block_filter_growth_ratio**block_num), kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='upsampling_conv_{}_{}'.format(level, block_num), backend='keras') else: continue if self.dropout is not None and self.dropout != 0: right_outputs[level] = Dropout(self.dropout)( right_outputs[level]) if self.batch_norm: right_outputs[level] = BatchNormalization()( right_outputs[level]) self.output_layer = DnConv(right_outputs[level], self.output_channels, (1, ) * self.dim, stride_size=(1, ) * self.dim, dim=self.dim, name='end_conv', backend='keras') super(UNet, self).build_model()
def build_model(self): """ A basic implementation of the U-Net proposed in https://arxiv.org/abs/1505.04597 TODO: specify optimizer Returns ------- Keras model or tensor If input_tensor is provided, this will return a tensor. Otherwise, this will return a Keras model. """ left_outputs = [] for level in range(self.depth): filter_num = int(self.max_filter / (2**(self.depth - level)) / self.downsize_filters_factor) if level == 0: left_outputs += [ DnConv(self.inputs, filter_num, kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_1'.format(level), backend='keras') ] left_outputs[level] = DnConv( left_outputs[level], 2 * filter_num, kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_2'.format(level), backend='keras') else: left_outputs += [ DnMaxPooling(left_outputs[level - 1], pool_size=self.pool_size, dim=self.dim, backend='keras') ] left_outputs[level] = DnConv( left_outputs[level], filter_num, kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_1'.format(level), backend='keras') left_outputs[level] = DnConv( left_outputs[level], 2 * filter_num, kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='downsampling_conv_{}_2'.format(level), backend='keras') if self.dropout is not None and self.dropout != 0: left_outputs[level] = Dropout(self.dropout)( left_outputs[level]) if self.batch_norm: left_outputs[level] = BatchNormalization()(left_outputs[level]) right_outputs = [left_outputs[self.depth - 1]] for level in range(self.depth): filter_num = int(self.max_filter / (2**(level)) / self.downsize_filters_factor) if level > 0: right_outputs += [ DnUpsampling(right_outputs[level - 1], pool_size=self.pool_size, dim=self.dim, backend='keras') ] right_outputs[level] = concatenate([ right_outputs[level], left_outputs[self.depth - level - 1] ], axis=self.dim + 1) right_outputs[level] = DnConv( right_outputs[level], filter_num, kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='upsampling_conv_{}_1'.format(level), backend='keras') right_outputs[level] = DnConv( right_outputs[level], int(filter_num / 2), kernel_size=self.kernel_size, stride_size=(1, ) * self.dim, activation=self.activation, padding=self.padding, dim=self.dim, name='upsampling_conv_{}_2'.format(level), backend='keras') else: continue if self.dropout is not None and self.dropout != 0: right_outputs[level] = Dropout(self.dropout)( right_outputs[level]) if self.batch_norm: right_outputs[level] = BatchNormalization()( right_outputs[level]) self.output_layer = DnConv(right_outputs[level], 1, (1, ) * self.dim, stride_size=(1, ) * self.dim, dim=self.dim, name='end_conv', backend='keras') # TODO: Brainstorm better way to specify outputs if self.input_tensor is None: if self.output_type == 'regression': self.model = Model(inputs=self.inputs, outputs=self.output_layer) self.model.compile( optimizer=Nadam(lr=self.initial_learning_rate), loss='mean_squared_error', metrics=['mean_squared_error']) if self.output_type == 'dice': act = Activation('sigmoid')(self.output_layer) self.model = Model(inputs=self.inputs, outputs=act) self.model.compile( optimizer=Nadam(lr=self.initial_learning_rate), loss=dice_coef_loss, metrics=[dice_coef]) if self.output_type == 'binary_label': act = Activation('sigmoid')(self.output_layer) self.model = Model(inputs=self.inputs, outputs=act) self.model.compile( optimizer=Nadam(lr=self.initial_learning_rate), loss='binary_crossentropy', metrics=['binary_accuracy']) if self.output_type == 'categorical_label': act = Activation('softmax')(self.output_layer) self.model = Model(inputs=self.inputs, outputs=act) self.model.compile( optimizer=Nadam(lr=self.initial_learning_rate), loss='categorical_crossentropy', metrics=['categorical_accuracy']) super(UNet, self).build() return self.model else: return
def unet(model, input_tensor, backend='tensorflow'): left_outputs = [] for level in range(model.depth): filter_num = int(model.max_filter / (2 ** (model.depth - level)) / model.downsize_filters_factor) if level == 0: left_outputs += [DnConv(input_tensor, filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_downsampling_conv_{}_1'.format(level), backend=backend)] left_outputs[level] = DnConv(left_outputs[level], 2 * filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_downsampling_conv_{}_2'.format(level), backend=backend) else: left_outputs += [DnMaxPooling(left_outputs[level - 1], pool_size=model.pool_size, dim=model.dim, backend=backend)] left_outputs[level] = DnConv(left_outputs[level], filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_downsampling_conv_{}_1'.format(level), backend=backend) left_outputs[level] = DnConv(left_outputs[level], 2 * filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_downsampling_conv_{}_2'.format(level), backend=backend) if model.dropout is not None and model.dropout != 0: left_outputs[level] = DnDropout(model.dropout)(left_outputs[level]) if model.batch_norm: left_outputs[level] = DnBatchNormalization(left_outputs[level]) right_outputs = [left_outputs[model.depth - 1]] for level in range(model.depth): filter_num = int(model.max_filter / (2 ** (level)) / model.downsize_filters_factor) if level > 0: right_outputs += [DnUpsampling(right_outputs[level - 1], pool_size=model.pool_size, dim=model.dim, backend=backend)] right_outputs[level] = concatenate([right_outputs[level], left_outputs[model.depth - level - 1]], axis=model.dim + 1) right_outputs[level] = DnConv(right_outputs[level], filter_num, model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_upsampling_conv_{}_1'.format(level), backend=backend) right_outputs[level] = DnConv(right_outputs[level], int(filter_num / 2), model.kernel_size, stride_size=(1,) * model.dim, activation=model.activation, padding=model.padding, dim=model.dim, name='unet_upsampling_conv_{}_2'.format(level), backend=backend) else: continue if model.dropout is not None and model.dropout != 0: right_outputs[level] = DnDropout(model.dropout)(right_outputs[level]) if model.batch_norm: right_outputs[level] = DnBatchNormalization()(right_outputs[level]) output_layer = DnConv(right_outputs[level], 1, (1, ) * model.dim, stride_size=(1,) * model.dim, dim=model.dim, name='end_conv', backend=backend) # TODO: Brainstorm better way to specify outputs if model.input_tensor is not None: return output_layer return model.model # def progressive_generator(model, latent_var, progressive_depth=1, name=None, transition=False, alpha_transition=0.0): # with tf.variable_scope(name) as scope: # convs = [] # convs += [tf.reshape(latent_var, [model.training_batch_size, 1, 1, model.latent_size])] # convs[-1] = DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(1, depth), kernel_size=(4, 4), stride_size=(1,) * model.dim, padding='Other', name='generator_n_1_conv', dim=model.dim))) # convs += [tf.reshape(convs[-1], [model.training_batch_size, 4, 4, model.get_filter_num(1, depth)])] # why necessary? --andrew # convs[-1] = DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(1, depth), stride_size=(1,) * model.dim, name='generator_n_2_conv', dim=model.dim))) # for i in range(progressive_depth - 1): # if i == progressive_depth - 2 and transition: # redundant conditions? --andrew # #To RGB # # Don't totally understand this yet, diagram out --andrew # transition_conv = DnConv(convs[-1], output_dim=model.channels, kernel_size=(1, 1), stride_size=(1,) * model.dim, name='generator_y_rgb_conv_{}'.format(convs[-1].shape[1]), dim=model.dim) # transition_conv = upscale(transition_conv, 2) # convs += [upscale(convs[-1], 2)] # convs[-1] = DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(i + 1, depth), stride_size=(1,) * model.dim, name='generator_n_conv_1_{}'.format(convs[-1].shape[1]), dim=model.dim))) # convs += [DnPixelNorm(leaky_relu(DnConv(convs[-1], output_dim=model.get_filter_num(i + 1, depth), stride_size=(1,) * model.dim, name='generator_n_conv_2_{}'.format(convs[-1].shape[1]), dim=model.dim)))] # #To RGB # convs += [DnConv(convs[-1], output_dim=model.channels, kernel_size=(1, 1), stride_size=(1,) * model.dim, name='generator_y_rgb_conv_{}'.format(convs[-1].shape[1]), dim=model.dim)] # if transition: # convs[-1] = (1 - alpha_transition) * transition_conv + alpha_transition * convs[-1] # return convs[-1]