コード例 #1
0
    def __call__(self, utterances: list, batch_history: list, *responses: list) -> list:
        """Selects for each utterance response with highest confidence and wraps them to RichControl objects.

        Args:
            utterances_batch: Not used.
            history_batch: Not used.
            responses: Each response positional argument corresponds to
                response of one of Agent skills and is represented by
                batch (list) of (response, confidence) tuple structures.

        Returns:
            result: A batch of responses corresponding to the utterance
                batch received by agent.
        """
        responses, confidences = zip(*[zip(*r) for r in responses])
        indexes = [c.index(max(c)) for c in zip(*confidences)]
        result = []
        for i, *responses in zip(indexes, *responses):
            rich_message = RichMessage()
            plain_text = PlainText(str(responses[i]))
            rich_message.add_control(plain_text)
            result.append(rich_message)
        return result
コード例 #2
0
    def __call__(self, utterances: list, batch_history: list,
                 *responses: list) -> list:
        """Selects for each utterance response with highest confidence and wraps them to RichControl objects.

        Args:
            utterances_batch: Not used.
            history_batch: Not used.
            responses: Each response positional argument corresponds to
                response of one of Agent skills and is represented by
                batch (list) of (response, confidence) tuple structures.

        Returns:
            result: A batch of responses corresponding to the utterance
                batch received by agent.
        """
        responses, confidences = zip(*[zip(*r) for r in responses])
        indexes = [c.index(max(c)) for c in zip(*confidences)]
        result = []
        for i, *responses in zip(indexes, *responses):
            rich_message = RichMessage()
            plain_text = PlainText(str(responses[i]))
            rich_message.add_control(plain_text)
            result.append(rich_message)
        return result
コード例 #3
0
    def _call(self,
              utterances_batch: list,
              utterances_ids: list = None) -> list:
        """Processes batch of utterances and returns corresponding responses batch.

        Args:
            utterances: Batch of incoming utterances.
            ids: Batch of dialog IDs corresponding to incoming utterances.

        Returns:
            responses: A batch of responses corresponding to the
                utterance batch received by agent.
        """

        rich_message = RichMessage()

        for utt, id_ in zip(utterances_batch, utterances_ids):

            log.debug(f'Utterance: {utt}')

            if utt == "/start":
                welcome = "I am a new e-commerce bot. I will help you to find products that you are looking for. Please type your request in plain text."
                rich_message.add_control(PlainText(welcome))
                continue

            if utt[0] == "@":
                command, *parts = utt.split(":")
                log.debug(f'Actions: {parts}')

                if command == "@details":
                    rich_message.add_control(
                        PlainText(
                            show_details(self.history[id_][int(
                                parts[0])][0][int(parts[1])])))
                    continue

                if command == "@entropy":
                    state = self.history[id_][int(parts[0])]
                    state[parts[1]] = parts[2]
                    state["start"] = 0
                    state["stop"] = 5
                    utt = state['query']
                    self.states[id_] = state

                if command == "@next":
                    state = self.history[id_][int(parts[0])]
                    state['start'] = state['stop']
                    state['stop'] = state['stop'] + 5
                    utt = state['query']
                    self.states[id_] = state

                if command == "@previous":
                    state = self.history[id_][int(parts[0])]
                    state['stop'] = state['start']
                    state['start'] = state['start'] - 5
                    utt = state['query']
                    self.states[id_] = state
            else:
                self.states[id_] = {"start": 0, "stop": 5}

            responses, confidences, state = self.skills[0]([utt],
                                                           self.history[id_],
                                                           [self.states[id_]])

            # update `self.states` with retrieved results
            self.states[id_] = state
            self.states[id_]["query"] = utt

            items, entropy, total = responses

            self.history[id_].append(responses)
            self.history[id_].append(self.states[id_])

            for idx, item in enumerate(items):

                title = item['Title']
                if 'ListPrice' in item:
                    title += " - **$" + item['ListPrice'].split('$')[1] + "**"

                buttons_frame = ButtonsFrame(text=title)
                buttons_frame.add_button(
                    Button(
                        'Show details', "@details:" +
                        str(len(self.history[id_]) - 2) + ":" + str(idx)))
                rich_message.add_control(buttons_frame)

            buttons_frame = ButtonsFrame(text="")
            if self.states[id_]["start"] > 0:
                buttons_frame.add_button(
                    Button('Previous',
                           "@previous:" + str(len(self.history[id_]) - 1)))

            buttons_frame.add_button(
                Button('Next', "@next:" + str(len(self.history[id_]) - 1)))
            rich_message.add_control(buttons_frame)

            if entropy:
                buttons_frame = ButtonsFrame(text="Please specify a " +
                                             entropy[0][1])
                for ent_value in entropy[0][2][:3]:
                    button_a = Button(
                        ent_value[0],
                        f'@entropy:{len(self.history[id_])-1}:{entropy[0][1]}:{ent_value[0]}'
                    )

                    buttons_frame.add_button(button_a)

                rich_message.add_control(buttons_frame)

        return [rich_message]
コード例 #4
0
ファイル: ecommerce_agent.py プロジェクト: JiKook31/thesis
    def _call(self, utterances_batch: List[str], utterances_ids: List[int] = None) -> List[RichMessage]:
        """Processes batch of utterances and returns corresponding responses batch.

        Args:
            utterances_batch: Batch of incoming utterances.
            utterances_ids: Batch of dialog IDs corresponding to incoming utterances.

        Returns:
            responses: A batch of responses corresponding to the
                utterance batch received by agent.
        """

        rich_message = RichMessage()
        for utt_id, utt in enumerate(utterances_batch):

            if utterances_ids:
                id_ = utterances_ids[utt_id]

            log.debug(f'Utterance: {utt}')

            if utt == "/start":
                welcome = "I am a new e-commerce bot. I will help you to find products that you are looking for. Please type your request in plain text."
                rich_message.add_control(PlainText(welcome))
                continue

            if utt[0] == "@":
                command, *parts = utt.split(":")
                log.debug(f'Actions: {parts}')

                if command == "@details":
                    batch_index = int(parts[0])  # batch index in history list
                    item_index = int(parts[1])  # index in batch
                    rich_message.add_control(PlainText(show_details(
                        self.history[id_][batch_index][item_index])))
                    continue

                if command == "@entropy":
                    state = self.history[id_][int(parts[0])]
                    state[parts[1]] = parts[2]
                    state["start"] = 0
                    state["stop"] = 5
                    utt = state['query']
                    self.states[id_] = state

                if command == "@next":
                    state = self.history[id_][int(parts[0])]
                    state['start'] = state['stop']
                    state['stop'] = state['stop'] + 5
                    utt = state['query']
                    self.states[id_] = state
            else:
                if id_ not in self.states:
                    self.states[id_] = {}

                self.states[id_]["start"] = 0
                self.states[id_]["stop"] = 5

            responses_batch, confidences_batch, state_batch = self.skills[0](
                [utt], self.history[id_], [self.states[id_]])

            # update `self.states` with retrieved results
            self.states[id_] = state_batch[0]
            self.states[id_]["query"] = utt

            items_batch, entropy_batch = responses_batch

            for batch_idx, items in enumerate(items_batch):

                self.history[id_].append(items)
                self.history[id_].append(self.states[id_])

                for idx, item in enumerate(items):
                    rich_message.add_control(_draw_item(item, idx, self.history[id_]))

                if len(items) == self.states[id_]['stop'] - self.states[id_]['start']:
                    buttons_frame = _draw_tail(entropy_batch[batch_idx], self.history[id_])
                    rich_message.add_control(buttons_frame)

        return [rich_message]
コード例 #5
0
ファイル: conversation.py プロジェクト: JiKook31/thesis
 def _send_infer_results(self, response: RichMessage, in_activity: dict):
     ms_bf_response = response.ms_bot_framework()
     for out_activity in ms_bf_response:
         if out_activity:
             self.out_gateway.send_activity(out_activity, in_activity)
コード例 #6
0
ファイル: conversation.py プロジェクト: RileyShe/DeepPavlov
 def _send_infer_results(self, response: RichMessage, in_activity: dict):
     ms_bf_response = response.ms_bot_framework()
     for out_activity in ms_bf_response:
         if out_activity:
             self.out_gateway.send_activity(out_activity, in_activity)
コード例 #7
0
    def _call(self, utterances_batch: List[str], utterances_ids: List[int] = None) -> List[RichMessage]:
        """Processes batch of utterances and returns corresponding responses batch.

        Args:
            utterances_batch: Batch of incoming utterances.
            utterances_ids: Batch of dialog IDs corresponding to incoming utterances.

        Returns:
            responses: A batch of responses corresponding to the
                utterance batch received by agent.
        """

        rich_message = RichMessage()
        for utt_id, utt in enumerate(utterances_batch):

            if utterances_ids:
                id_ = utterances_ids[utt_id]

            log.debug(f'Utterance: {utt}')

            if utt == "/start":
                welcome = "I am a new e-commerce bot. I will help you to find products that you are looking for. Please type your request in plain text."
                rich_message.add_control(PlainText(welcome))
                continue

            if utt[0] == "@":
                command, *parts = utt.split(":")
                log.debug(f'Actions: {parts}')

                if command == "@details":
                    batch_index = int(parts[0])  # batch index in history list
                    item_index = int(parts[1])  # index in batch
                    rich_message.add_control(PlainText(show_details(
                        self.history[id_][batch_index][item_index])))
                    continue

                if command == "@entropy":
                    state = self.history[id_][int(parts[0])]
                    state[parts[1]] = parts[2]
                    state["start"] = 0
                    state["stop"] = 5
                    utt = state['query']
                    self.states[id_] = state

                if command == "@next":
                    state = self.history[id_][int(parts[0])]
                    state['start'] = state['stop']
                    state['stop'] = state['stop'] + 5
                    utt = state['query']
                    self.states[id_] = state
            else:
                if id_ not in self.states:
                    self.states[id_] = {}

                self.states[id_]["start"] = 0
                self.states[id_]["stop"] = 5

            responses_batch, confidences_batch, state_batch = self.skills[0](
                [utt], self.history[id_], [self.states[id_]])

            # update `self.states` with retrieved results
            self.states[id_] = state_batch[0]
            self.states[id_]["query"] = utt

            items_batch, entropy_batch = responses_batch

            for batch_idx, items in enumerate(items_batch):

                self.history[id_].append(items)
                self.history[id_].append(self.states[id_])

                for idx, item in enumerate(items):
                    rich_message.add_control(_draw_item(item, idx, self.history[id_]))

                if len(items) == self.states[id_]['stop'] - self.states[id_]['start']:
                    buttons_frame = _draw_tail(entropy_batch[batch_idx], self.history[id_])
                    rich_message.add_control(buttons_frame)

        return [rich_message]