コード例 #1
0
 def _update_racers_metrics(self):
     """ Used to update the racers metric information
     """
     if not rospy.is_shutdown():
         video_metrics = self.mp4_video_metrics_srv(
             VideoMetricsSrvRequest())
         self._agents_metrics.put(video_metrics)
コード例 #2
0
    def _edit_major_cv_image(self, major_cv_image):
        """ Apply all the editing for the Major 45degree camera image
        Args:
            major_cv_image (Image): Image straight from the camera
        Returns:
            Image: Edited main camera image
        """
        # Applying gradient to whole major image and then writing text
        major_cv_image = utils.apply_gradient(major_cv_image,
                                              self.gradient_img,
                                              self.gradient_alpha)

        # Subscribing to the agent metrics
        mp4_video_metrics_info = list()
        for racecar_info, mp4_video_metrics_srv in zip(
                self.racecars_info, self.mp4_video_metrics_srv_list):
            mp4_video_metrics = mp4_video_metrics_srv(VideoMetricsSrvRequest())
            mp4_video_metrics_info.append(mp4_video_metrics)

        # Adding display name to the image
        agents_speed = 0
        agent_done = False
        for i, racecar_info in enumerate(self.racecars_info):
            loc_x, loc_y = XYPixelLoc.MULTI_AGENT_DISPLAY_NAME_LOC.value[i][
                0], XYPixelLoc.MULTI_AGENT_DISPLAY_NAME_LOC.value[i][1]
            # Display name (Racer name/Model name)
            display_name = racecar_info['display_name']
            display_name_txt = display_name if len(
                display_name) < 15 else "{}...".format(display_name[:15])
            major_cv_image = utils.write_text_on_image(
                image=major_cv_image,
                text=display_name_txt,
                loc=(loc_x, loc_y),
                font=self.amazon_ember_regular_20px,
                font_color=RaceCarColorToRGB.White.value,
                font_shadow_color=RaceCarColorToRGB.Black.value)
            # Lap Counter
            loc_y += 30
            total_laps = rospy.get_param("NUMBER_OF_TRIALS", 0)
            current_lap = int(mp4_video_metrics_info[i].lap_counter) + 1
            lap_counter_text = "{}/{}".format(current_lap, total_laps)
            major_cv_image = utils.write_text_on_image(
                image=major_cv_image,
                text=lap_counter_text,
                loc=(loc_x, loc_y),
                font=self.amazon_ember_heavy_30px,
                font_color=RaceCarColorToRGB.White.value,
                font_shadow_color=RaceCarColorToRGB.Black.value)
            # Reset counter
            loc_y += 45
            reset_counter_text = "Reset | {}".format(
                mp4_video_metrics_info[i].reset_counter)
            major_cv_image = utils.write_text_on_image(
                image=major_cv_image,
                text=reset_counter_text,
                loc=(loc_x, loc_y),
                font=self.amazon_ember_light_18px,
                font_color=RaceCarColorToRGB.White.value,
                font_shadow_color=RaceCarColorToRGB.Black.value)
            if self.racecar_name == racecar_info['name']:
                agents_speed = mp4_video_metrics_info[i].throttle
            # The race is complete when total lap is same as current lap and done flag is set
            agent_done = agent_done or (mp4_video_metrics_info[i].done and
                                        (current_lap == int(total_laps)))

        # Speed
        loc_x, loc_y = XYPixelLoc.SPEED_EVAL_LOC.value
        if self.is_league_leaderboard:
            loc_x, loc_y = XYPixelLoc.SPEED_LEADERBOARD_LOC.value
        speed_text = "{} m/s".format(
            utils.get_speed_formatted_str(agents_speed))
        major_cv_image = utils.write_text_on_image(
            image=major_cv_image,
            text=speed_text,
            loc=(loc_x, loc_y),
            font=self.amazon_ember_light_20px,
            font_color=RaceCarColorToRGB.White.value,
            font_shadow_color=RaceCarColorToRGB.Black.value)
        # Leaderboard name
        if self.is_league_leaderboard:
            major_cv_image = utils.write_text_on_image(
                image=major_cv_image,
                text=self.leaderboard_name,
                loc=XYPixelLoc.LEADERBOARD_NAME_LOC.value,
                font=self.amazon_ember_regular_16px,
                font_color=RaceCarColorToRGB.White.value,
                font_shadow_color=RaceCarColorToRGB.Black.value)

        # Evaluation type
        loc_x, loc_y = XYPixelLoc.RACE_TYPE_EVAL_LOC.value
        if self.is_league_leaderboard:
            loc_x, loc_y = XYPixelLoc.RACE_TYPE_RACE_LOC.value
        race_text = "race" if self.is_racing else "evaluation"
        evaluation_type_txt = "{} {}".format(
            RACE_TYPE_TO_VIDEO_TEXT_MAPPING[self.race_type], race_text)
        major_cv_image = utils.write_text_on_image(
            image=major_cv_image,
            text=evaluation_type_txt,
            loc=(loc_x, loc_y),
            font=self.amazon_ember_light_italic_20px,
            font_color=RaceCarColorToRGB.White.value,
            font_shadow_color=RaceCarColorToRGB.Black.value)
        # total_evaluation_time (Race time)
        loc_x, loc_y = XYPixelLoc.MULTI_AGENT_EVAL_TIME.value
        total_eval_milli_seconds = mp4_video_metrics_info[
            0].total_evaluation_time
        time_delta = datetime.timedelta(milliseconds=total_eval_milli_seconds)
        total_eval_time_text = "Race | {}".format(
            utils.milliseconds_to_timeformat(time_delta))
        major_cv_image = utils.write_text_on_image(
            image=major_cv_image,
            text=total_eval_time_text,
            loc=(loc_x, loc_y),
            font=self.amazon_ember_light_18px,
            font_color=RaceCarColorToRGB.White.value,
            font_shadow_color=RaceCarColorToRGB.Black.value)
        # AWS Deepracer logo at the bottom for the community leaderboard
        if self.is_league_leaderboard:
            major_cv_image = utils.write_text_on_image(
                image=major_cv_image,
                text=AWS_DEEPRACER_WATER_MARK,
                loc=XYPixelLoc.AWS_DEEPRACER_WATER_MARK_LOC.value,
                font=self.amazon_ember_regular_16px,
                font_color=RaceCarColorToRGB.White.value,
                font_shadow_color=RaceCarColorToRGB.Black.value)

        # Check if the done flag is set and set the banner appropriately
        if agent_done:
            # When the cv2 text is written, it automatically drops the alpha value of the image
            rel_y_offset = XYPixelLoc.TRACK_IMG_WITH_OFFSET_LOC.value[
                1] if self.is_league_leaderboard else 0
            major_cv_image = cv2.cvtColor(major_cv_image, cv2.COLOR_RGB2RGBA)
            racecomplete_image = utils.get_image(
                TrackAssetsIconographicPngs.RACE_COMPLETE_OVERLAY_PNG.value,
                IconographicImageSize.RACE_COMPLETE_IMAGE_SIZE.value)
            x_offset = major_cv_image.shape[
                1] - racecomplete_image.shape[1] // 2
            y_offset = major_cv_image.shape[
                0] - RACE_COMPLETE_Y_OFFSET - rel_y_offset - racecomplete_image.shape[
                    0] // 2
            major_cv_image = utils.plot_rectangular_image_on_main_image(
                major_cv_image, racecomplete_image, (x_offset, y_offset))

        return major_cv_image
コード例 #3
0
    def _edit_major_cv_image(self, major_cv_image):
        """ Apply all the editing for the Major 45degree camera image
        Args:
            major_cv_image (Image): Image straight from the camera
        Returns:
            Image: Edited main camera image
        """
        # Applying gradient to whole major image and then writing text
        major_cv_image = utils.apply_gradient(major_cv_image,
                                              self.gradient_img,
                                              self.gradient_alpha)

        # Subscribing to the agent metrics
        mp4_video_metrics_info = list()
        for racecar_info, mp4_video_metrics_srv in zip(
                self.racecars_info, self.mp4_video_metrics_srv_list):
            mp4_video_metrics = mp4_video_metrics_srv(VideoMetricsSrvRequest())
            mp4_video_metrics_info.append(mp4_video_metrics)

        # Adding display name to the image
        display_name_loc = [(10, 10), (450, 10)]
        agents_speed = 0
        agent_done = False
        for i, racecar_info in enumerate(self.racecars_info):
            loc_x, loc_y = display_name_loc[i][0], display_name_loc[i][1]
            # Display name (Racer name/Model name)
            display_name = racecar_info['display_name']
            display_name_txt = display_name if len(
                display_name) < 15 else "{}...".format(display_name[:15])
            major_cv_image = utils.write_text_on_image(
                image=major_cv_image,
                text=display_name_txt,
                loc=(loc_x, loc_y),
                font=self.amazon_ember_regular_20px,
                font_color=RaceCarColorToRGB.White.value,
                font_shadow_color=RaceCarColorToRGB.Black.value)
            # Lap Counter
            loc_y += 30
            total_laps = rospy.get_param("NUMBER_OF_TRIALS", 0)
            lap_counter_text = "{}/{}".format(
                int(mp4_video_metrics_info[i].lap_counter), total_laps)
            major_cv_image = utils.write_text_on_image(
                image=major_cv_image,
                text=lap_counter_text,
                loc=(loc_x, loc_y),
                font=self.amazon_ember_heavy_30px,
                font_color=RaceCarColorToRGB.White.value,
                font_shadow_color=RaceCarColorToRGB.Black.value)
            # Reset counter
            loc_y += 45
            reset_counter_text = "Reset | {}".format(
                mp4_video_metrics_info[i].reset_counter)
            major_cv_image = utils.write_text_on_image(
                image=major_cv_image,
                text=reset_counter_text,
                loc=(loc_x, loc_y),
                font=self.amazon_ember_light_18px,
                font_color=RaceCarColorToRGB.White.value,
                font_shadow_color=RaceCarColorToRGB.Black.value)
            if self.racecar_name == racecar_info['name']:
                agents_speed = mp4_video_metrics_info[i].throttle
            agent_done = agent_done or mp4_video_metrics_info[i].done

        # Speed
        loc_x, loc_y = 10, 420
        speed_text = "{} m/s".format(
            utils.get_speed_formatted_str(agents_speed))
        major_cv_image = utils.write_text_on_image(
            image=major_cv_image,
            text=speed_text,
            loc=(loc_x, loc_y),
            font=self.amazon_ember_light_20px,
            font_color=RaceCarColorToRGB.White.value,
            font_shadow_color=RaceCarColorToRGB.Black.value)
        # Evaluation type
        loc_y += 25
        # TODO - Show text based on whether its a race or customer run evaluation
        race_text = "race"
        evaluation_type_txt = "{} {}".format(
            RACE_TYPE_TO_VIDEO_TEXT_MAPPING[self.race_type], race_text)
        major_cv_image = utils.write_text_on_image(
            image=major_cv_image,
            text=evaluation_type_txt,
            loc=(loc_x, loc_y),
            font=self.amazon_ember_light_italic_20px,
            font_color=RaceCarColorToRGB.White.value,
            font_shadow_color=RaceCarColorToRGB.Black.value)
        # total_evaluation_time (Race time)
        loc_x, loc_y = 240, 10
        total_eval_milli_seconds = mp4_video_metrics_info[
            0].total_evaluation_time
        time_delta = datetime.timedelta(milliseconds=total_eval_milli_seconds)
        total_eval_time_text = "Race | {}".format(
            utils.milliseconds_to_timeformat(time_delta))
        major_cv_image = utils.write_text_on_image(
            image=major_cv_image,
            text=total_eval_time_text,
            loc=(loc_x, loc_y),
            font=self.amazon_ember_light_18px,
            font_color=RaceCarColorToRGB.White.value,
            font_shadow_color=RaceCarColorToRGB.Black.value)
        # Check if the done flag is set and set the banner appropriately
        if agent_done:
            # When the cv2 text is written, it automatically drops the alpha value of the image
            major_cv_image = cv2.cvtColor(major_cv_image, cv2.COLOR_RGB2RGBA)
            racecomplete_image = utils.get_image(
                TrackAssetsIconographicPngs.RACE_COMPLETE_OVERLAY_PNG.value,
                IconographicImageSize.RACE_COMPLETE_IMAGE_SIZE.value)
            x_offset = major_cv_image.shape[
                1] - racecomplete_image.shape[1] // 2
            y_offset = major_cv_image.shape[
                0] - 180 - racecomplete_image.shape[0] // 2
            major_cv_image = utils.plot_rectangular_image_on_main_image(
                major_cv_image, racecomplete_image, (x_offset, y_offset))

        return major_cv_image