コード例 #1
0
                compress_size=64,
                enc_num_size=23,
                enc_cat_size=[(3049, 16), (7, 1), (10, 1), (3, 1), (3, 1),
                              (32, 4), (5, 1), (5, 1), (3, 1)],
                dec_num_size=21,
                attn_heads=4,
                attn_size=32,
                residual=False,
                dec_cat_size=[(3049, 16), (7, 1), (10, 1), (3, 1), (3, 1),
                              (32, 4), (5, 1), (5, 1), (3, 1)],
                dropout=0.1,
                num_layers=1,
                rnn_type="GRU")
opt = Adam(model.parameters(), 0.001)
loss_fn = MSELoss()
lr_scheduler = ReduceCosineAnnealingLR(opt, 64, eta_min=1e-4, gamma=0.998)
model.cuda()
learner = Learner(model,
                  opt,
                  './m5_rnn',
                  lr_scheduler=lr_scheduler,
                  verbose=5000)
learner.fit(1000,
            train_dl,
            valid_dl,
            patient=64,
            start_save=-1,
            early_stopping=True)
learner.load(174)
learner.model.eval()
コード例 #2
0
                enc_num_size=40,
                enc_cat_size=[(62, 4)],
                dec_num_size=40,
                dec_cat_size=[(62, 4)],
                residual=True,
                beta1=.0,
                beta2=.0,
                attn_heads=1,
                attn_size=128,
                num_layers=1,
                dropout=0.0,
                rnn_type='GRU')
opt = Adam(model.parameters(), 0.001)
loss_fn = MSELoss()
model.cuda()
lr_scheduler = ReduceCosineAnnealingLR(opt, 64, eta_min=5e-5)
learner = Learner(model,
                  opt,
                  './power_preds',
                  verbose=20,
                  lr_scheduler=lr_scheduler)
learner.fit(300,
            train_frame,
            valid_frame,
            patient=128,
            start_save=1,
            early_stopping=True)
learner.load(299)
learner.model.eval()

preds = []