compress_size=64, enc_num_size=23, enc_cat_size=[(3049, 16), (7, 1), (10, 1), (3, 1), (3, 1), (32, 4), (5, 1), (5, 1), (3, 1)], dec_num_size=21, attn_heads=4, attn_size=32, residual=False, dec_cat_size=[(3049, 16), (7, 1), (10, 1), (3, 1), (3, 1), (32, 4), (5, 1), (5, 1), (3, 1)], dropout=0.1, num_layers=1, rnn_type="GRU") opt = Adam(model.parameters(), 0.001) loss_fn = MSELoss() lr_scheduler = ReduceCosineAnnealingLR(opt, 64, eta_min=1e-4, gamma=0.998) model.cuda() learner = Learner(model, opt, './m5_rnn', lr_scheduler=lr_scheduler, verbose=5000) learner.fit(1000, train_dl, valid_dl, patient=64, start_save=-1, early_stopping=True) learner.load(174) learner.model.eval()
enc_num_size=40, enc_cat_size=[(62, 4)], dec_num_size=40, dec_cat_size=[(62, 4)], residual=True, beta1=.0, beta2=.0, attn_heads=1, attn_size=128, num_layers=1, dropout=0.0, rnn_type='GRU') opt = Adam(model.parameters(), 0.001) loss_fn = MSELoss() model.cuda() lr_scheduler = ReduceCosineAnnealingLR(opt, 64, eta_min=5e-5) learner = Learner(model, opt, './power_preds', verbose=20, lr_scheduler=lr_scheduler) learner.fit(300, train_frame, valid_frame, patient=128, start_save=1, early_stopping=True) learner.load(299) learner.model.eval() preds = []