コード例 #1
0
    def test_baseline_nnlm_init(self):
        model = NNLM(ctx_size=2,
                     vocab_size=4,
                     embed_dim=10,
                     h_dim=4,
                     num_h=2,
                     use_dropout=True,
                     embed_dropout=True,
                     drop_probability=0.1)

        print("RUN GRAPH:")
        for layer in tx.layers_to_list(model.run_outputs):
            print(layer.full_str())

        print("=" * 60)

        print("TRAIN GRAPH:")
        for layer in tx.layers_to_list(model.train_outputs):
            print(layer.full_str())
        print("=" * 60)

        print("EVAL GRAPH:")
        for layer in tx.layers_to_list(model.eval_outputs):
            print(layer.full_str())
        print("=" * 60)

        runner = tx.ModelRunner(model)
        runner.log_graph("/tmp/")
コード例 #2
0
    def test_nce_nnlm(self):
        vocab_size = 1000
        embed_size = 100
        nce_samples = 10

        model = NNLM(ctx_size=2,
                     vocab_size=vocab_size,
                     h_activation=tx.relu,
                     embed_dim=embed_size,
                     embed_share=True,
                     num_h=1,
                     h_dim=128,
                     use_f_predict=True,
                     use_dropout=True,
                     drop_probability=0.75,
                     embed_dropout=True,
                     use_nce=False,
                     nce_samples=nce_samples)

        # model.eval_tensors.append(model.train_loss_tensors[0])
        runner = tx.ModelRunner(model)

        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        # options = None
        runner.set_session(runtime_stats=True, run_options=options)
        runner.set_log_dir("/tmp/")
        runner.log_graph()
        runner.config_optimizer(
            tf.train.GradientDescentOptimizer(learning_rate=0.01),
            gradient_op=lambda grad: tf.clip_by_norm(grad, 1.0))
        # runner.config_optimizer(tf.train.AdamOptimizer(learning_rate=0.005))

        data = np.array([[0, 2], [5, 7], [9, 8], [3, 4], [1, 9]])
        labels = np.array([[32], [56], [12], [2], [5]])
        # data = np.array([[0, 2], [5, 7], [9, 8], [3, 4], [3, 2]])
        # labels = np.array([[32], [56], [12], [2], [7]])
        # data = np.array([[0, 2]])
        # labels = np.array([[32]])

        ppl_curve = []

        for i in tqdm(range(3000)):
            res = runner.train(data, labels, output_loss=True)

            # print(res)
            # print(res)
            if i % 5 == 0:
                # print(res)
                res = runner.eval(data, labels)
                print(res)
                ppl_curve.append(np.exp(res))

        ppl = sns.lineplot(x=np.array(list(range(len(ppl_curve)))),
                           y=np.array(ppl_curve))
        print(ppl_curve)
        plt.show()
コード例 #3
0
    def test_nnlm(self):
        vocab_size = 4
        ctx_size = 22
        batch_size = 2
        embed_dim = 512
        h_dim = 128

        inputs = tx.Input(ctx_size, dtype=tf.int64, name="ctx_inputs")
        labels = tx.Input(1, dtype=tf.int64, name="ctx_inputs")
        model = NNLM(inputs=inputs,
                     label_inputs=labels,
                     vocab_size=vocab_size,
                     embed_dim=embed_dim,
                     embed_share=True,
                     use_f_predict=True,
                     h_dim=h_dim,
                     use_dropout=False,
                     drop_probability=0.9,
                     embed_dropout=False,
                     use_nce=True,
                     nce_samples=2)

        model.set_session(runtime_stats=True)
        model.set_log_dir("/tmp/")
        model.log_graph()
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        # options = None
        model.set_session(runtime_stats=True, run_options=options)
        model.config_optimizer(
            tf.train.AdamOptimizer(learning_rate=0.005),
            gradient_op=lambda grad: tf.clip_by_norm(grad, 4.0))

        input_data = np.random.randint(0, vocab_size, [batch_size, ctx_size])
        label_data = np.random.randint(0, vocab_size, [batch_size, 1])

        with self.cached_session():
            for _ in tqdm(range(1)):
                eval1 = model.eval({inputs: input_data, labels: label_data})
                eval2 = model.eval({inputs: input_data, labels: label_data})
                result = model.train({
                    inputs: input_data,
                    labels: label_data
                },
                                     write_summaries=True)

        # print(list(map(str,model.train_graph.output_layers)))
        self.assertArrayEqual(eval1, eval2)
        self.assertArrayNotEqual(result, eval2)
コード例 #4
0
def run(progress=False, **kwargs):
    arg_dict.from_dict(kwargs)
    args = arg_dict.to_namespace()

    # ======================================================================================
    # Load Params, Prepare results assets
    # ======================================================================================

    # Experiment parameter summary
    res_param_filename = os.path.join(args.out_dir,
                                      "params_{id}.csv".format(id=args.run_id))
    with open(res_param_filename, "w") as param_file:
        writer = csv.DictWriter(f=param_file, fieldnames=arg_dict.keys())
        writer.writeheader()
        writer.writerow(arg_dict)
        param_file.flush()

    # make dir for model checkpoints
    if args.save_model:
        model_ckpt_dir = os.path.join(args.out_dir,
                                      "model_{id}".format(id=args.run_id))
        os.makedirs(model_ckpt_dir, exist_ok=True)
        model_path = os.path.join(model_ckpt_dir,
                                  "nnlm_{id}.ckpt".format(id=args.run_id))

    # start perplexity file
    ppl_header = ["id", "run", "epoch", "step", "lr", "dataset", "perplexity"]
    ppl_fname = os.path.join(args.out_dir,
                             "perplexity_{id}.csv".format(id=args.run_id))

    ppl_file = open(ppl_fname, "w")
    ppl_writer = csv.DictWriter(f=ppl_file, fieldnames=ppl_header)
    ppl_writer.writeheader()

    # ======================================================================================
    # Load Corpus & Vocab
    # ======================================================================================
    corpus = h5py.File(os.path.join(args.corpus,
                                    "ptb_{}.hdf5".format(args.ngram_size)),
                       mode='r')
    vocab = marisa_trie.Trie(corpus["vocabulary"])

    def data_pipeline(data,
                      epochs=1,
                      batch_size=args.batch_size,
                      shuffle=False):
        def chunk_fn(x):
            return chunk_it(x, chunk_size=batch_size * 1000)

        if epochs > 1:
            data = repeat_apply(chunk_fn, data, epochs)
        else:
            data = chunk_fn(data)

        if shuffle:
            data = shuffle_it(data, args.shuffle_buffer_size)

        data = batch_it(data, size=batch_size, padding=False)
        return data

    # ======================================================================================
    # MODEL
    # ======================================================================================
    # Activation functions
    if args.h_act == "relu":
        h_act = tx.relu
        h_init = tx.he_normal_init()
    elif args.h_act == "tanh":
        h_act = tx.tanh
        h_init = tx.glorot_uniform()
    elif args.h_act == "elu":
        h_act = tx.elu
        h_init = tx.he_normal_init()

    # Parameter Init
    if args.embed_init == "normal":
        embed_init = tx.random_normal(mean=0., stddev=args.embed_init_val)
    elif args.embed_init == "uniform":
        embed_init = tx.random_uniform(minval=-args.embed_init_val,
                                       maxval=args.embed_init_val)

    if args.logit_init == "normal":
        logit_init = tx.random_normal(mean=0., stddev=args.logit_init_val)
    elif args.logit_init == "uniform":
        logit_init = tx.random_uniform(minval=-args.logit_init_val,
                                       maxval=args.logit_init_val)

    f_init = None
    if args.use_f_predict:
        if args.f_init == "normal":
            f_init = tx.random_normal(mean=0., stddev=args.f_init_val)
        elif args.f_init == "uniform":
            f_init = tx.random_uniform(minval=-args.f_init_val,
                                       maxval=args.f_init_val)

    model = NNLM(ctx_size=args.ngram_size - 1,
                 vocab_size=len(vocab),
                 embed_dim=args.embed_dim,
                 embed_init=embed_init,
                 embed_share=args.embed_share,
                 logit_init=logit_init,
                 h_dim=args.h_dim,
                 num_h=args.num_h,
                 h_activation=h_act,
                 h_init=h_init,
                 use_dropout=args.dropout,
                 drop_probability=args.keep_prob,
                 embed_dropout=args.embed_dropout,
                 l2_loss=args.l2_loss,
                 l2_weight=args.l2_loss_coef,
                 use_f_predict=args.use_f_predict,
                 f_init=f_init,
                 logit_bias=args.logit_bias)

    model_runner = tx.ModelRunner(model)

    # we use an InputParam because we might want to change it during training
    lr_param = tx.InputParam(value=args.lr)
    if args.optimizer == "sgd":
        optimizer = tf.train.GradientDescentOptimizer(
            learning_rate=lr_param.tensor)
    elif args.optimizer == "adam":
        optimizer = tf.train.AdamOptimizer(learning_rate=lr_param.tensor,
                                           beta1=args.optimizer_beta1,
                                           beta2=args.optimizer_beta2,
                                           epsilon=args.optimizer_epsilon)
    elif args.optimizer == "ams":
        optimizer = tx.AMSGrad(learning_rate=lr_param.tensor,
                               beta1=args.optimizer_beta1,
                               beta2=args.optimizer_beta2,
                               epsilon=args.optimizer_epsilon)

    def clip_grad_global(grads):
        grads, _ = tf.clip_by_global_norm(grads, 12)
        return grads

    def clip_grad_local(grad):
        return tf.clip_by_norm(grad, args.clip_value)

    if args.clip_grads:
        if args.clip_local:
            clip_fn = clip_grad_local
        else:
            clip_fn = clip_grad_global

    if args.clip_grads:
        model_runner.config_optimizer(optimizer,
                                      optimizer_params=lr_param,
                                      gradient_op=clip_fn,
                                      global_gradient_op=not args.clip_local)
    else:
        model_runner.config_optimizer(optimizer, optimizer_params=lr_param)

    # ======================================================================================
    # EVALUATION
    # ======================================================================================

    def eval_model(runner,
                   dataset_it,
                   len_dataset=None,
                   display_progress=False):
        if display_progress:
            pb = tqdm(total=len_dataset, ncols=60)
        batches_processed = 0
        sum_loss = 0
        for batch in dataset_it:
            batch = np.array(batch, dtype=np.int64)
            ctx = batch[:, :-1]
            target = batch[:, -1:]

            mean_loss = runner.eval(ctx, target)
            sum_loss += mean_loss

            if display_progress:
                pb.update(args.batch_size)
            batches_processed += 1

        if display_progress:
            pb.close()

        return np.exp(sum_loss / batches_processed)

    def evaluation(runner: tx.ModelRunner,
                   pb,
                   cur_epoch,
                   step,
                   display_progress=False):

        ##pb.write("[Eval Validation Set]")

        val_data = corpus["validation"]
        ppl_validation = eval_model(
            runner, data_pipeline(val_data, epochs=1, shuffle=False),
            len(val_data), display_progress)
        res_row = {
            "id": args.id,
            "run": args.run,
            "epoch": cur_epoch,
            "step": step,
            "lr": lr_param.value,
            "dataset": "validation",
            "perplexity": ppl_validation
        }
        ppl_writer.writerow(res_row)

        if args.eval_test:
            # pb.write("[Eval Test Set]")
            test_data = corpus["test"]
            ppl_test = eval_model(
                runner, data_pipeline(test_data, epochs=1, shuffle=False),
                len(test_data), display_progress)

            res_row = {
                "id": args.id,
                "run": args.run,
                "epoch": cur_epoch,
                "step": step,
                "lr": lr_param.value,
                "dataset": "test",
                "perplexity": ppl_test
            }
            ppl_writer.writerow(res_row)

        ppl_file.flush()

        if args.eval_test:
            pb.write("test. ppl = {}".format(ppl_test))

        # pb.write("valid. ppl = {}".format(ppl_validation))
        return ppl_validation

    # ======================================================================================
    # TRAINING LOOP
    # ======================================================================================
    print("starting TF")

    # preparing evaluation steps
    # I use ceil because I make sure we have padded batches at the end

    epoch_step = 0
    global_step = 0
    current_epoch = 0
    patience = 0

    cfg = tf.ConfigProto()
    cfg.gpu_options.allow_growth = True
    sess = tf.Session(config=cfg)
    model_runner.set_session(sess)
    model_runner.init_vars()

    training_dset = corpus["training"]
    progress = tqdm(total=len(training_dset) * args.epochs, position=1)
    training_data = data_pipeline(training_dset,
                                  epochs=args.epochs,
                                  shuffle=True)

    evals = []

    try:

        for ngram_batch in training_data:
            epoch = progress.n // len(training_dset) + 1
            # Start New Epoch
            if epoch != current_epoch:
                current_epoch = epoch
                epoch_step = 0
                if progress:
                    progress.write("epoch: {}".format(current_epoch))

            # Eval Time
            if epoch_step == 0:
                current_eval = evaluation(model_runner, progress, epoch,
                                          global_step)
                evals.append(current_eval)

                if global_step > 0:
                    if args.early_stop:
                        if evals[-2] - evals[-1] < args.eval_threshold:
                            if patience >= 3:
                                break
                            patience += 1
                        else:
                            # restart patience and adjust lr
                            patience = 0
                    # lr decay only at the start of each epoch
                    if args.lr_decay and len(evals) > 0:
                        if evals[-2] - evals[-1] < args.eval_threshold:
                            lr_param.value = max(
                                lr_param.value * args.lr_decay_rate,
                                args.lr_decay_threshold)
                            if progress:
                                progress.write("lr decreased to {}".format(
                                    lr_param.value))

            # ================================================
            # TRAIN MODEL
            # ================================================
            ngram_batch = np.array(ngram_batch, dtype=np.int64)
            ctx_ids = ngram_batch[:, :-1]
            word_ids = ngram_batch[:, -1:]

            model_runner.train(ctx_ids, word_ids)
            progress.update(args.batch_size)

            epoch_step += 1
            global_step += 1

        # if not early stop, evaluate last state of the model
        if not args.early_stop or patience < 3:
            evaluation(model_runner, progress, epoch, epoch_step)
        ppl_file.close()

        if args.save_model:
            model_runner.save_model(model_name=model_path,
                                    step=global_step,
                                    write_state=False)

        model_runner.close_session()
        progress.close()
        tf.reset_default_graph()

    except Exception as e:
        traceback.print_exc()
        os.remove(ppl_file.name)
        os.remove(param_file.name)
        raise e
コード例 #5
0
ファイル: nnlm.py プロジェクト: davidenunes/deepsign
def run(**kwargs):
    arg_dict.from_dict(kwargs)
    args = arg_dict.to_namespace()

    # ======================================================================================
    # Load Corpus & Vocab
    # ======================================================================================
    corpus = PTBReader(path=args.corpus, mark_eos=args.mark_eos)
    corpus_stats = h5py.File(os.path.join(args.corpus, "ptb_stats.hdf5"), mode='r')
    vocab = marisa_trie.Trie(corpus_stats["vocabulary"])

    to_ngrams_batch = partial(to_ngrams,
                              vocab=vocab,
                              ngram_size=args.ngram_size,
                              batch_size=args.batch_size,
                              epochs=1,
                              shuffle=False,
                              shuffle_buffer_size=args.shuffle_buffer_size,
                              enum_epoch=False)

    training_len = sum(1 for _ in to_ngrams_batch(corpus.training_set, batch_size=1))

    validation_len = None
    test_len = None
    if args.eval_progress:
        validation_len = sum(1 for _ in to_ngrams_batch(corpus.validation_set, batch_size=1))
        test_len = sum(1 for _ in to_ngrams_batch(corpus.test_set, batch_size=1))

    # ======================================================================================
    # Load Params, Prepare results assets
    # ======================================================================================
    # Experiment parameter summary
    res_param_filename = os.path.join(args.out_dir, "params_{id}_{run}.csv".format(id=args.id, run=args.run))
    with open(res_param_filename, "w") as param_file:
        writer = csv.DictWriter(f=param_file, fieldnames=arg_dict.keys())
        writer.writeheader()
        writer.writerow(arg_dict)
        param_file.flush()

    # make dir for model checkpoints
    if args.save_model:
        model_ckpt_dir = os.path.join(args.out_dir, "model_{id}_{run}".format(id=args.id, run=args.run))
        os.makedirs(model_ckpt_dir, exist_ok=True)
        model_path = os.path.join(model_ckpt_dir, "nnlm_{id}_{run}.ckpt".format(id=args.id, run=args.run))

    # start perplexity file
    ppl_header = ["id", "run", "epoch", "step", "lr", "dataset", "perplexity"]
    ppl_filename = os.path.join(args.out_dir, "perplexity_{id}_{run}.csv".format(id=args.id, run=args.run))

    ppl_file = open(ppl_filename, "w")
    ppl_writer = csv.DictWriter(f=ppl_file, fieldnames=ppl_header)
    ppl_writer.writeheader()

    # ======================================================================================
    # MODEL
    # ======================================================================================
    # Configure weight initializers based on activation functions
    if args.h_act == "relu":
        h_act = tx.relu
        h_init = tx.he_normal_init()
    elif args.h_act == "tanh":
        h_act = tx.tanh
        h_init = tx.glorot_uniform()
    elif args.h_act == "elu":
        h_act = tx.elu
        h_init = tx.he_normal_init()
    elif args.h_act == "selu":
        h_act = tf.nn.selu
        h_init = tx.glorot_uniform()

    # Configure embedding and logit weight initializers
    if args.embed_init == "normal":
        embed_init = tx.random_normal(mean=0.,
                                      stddev=args.embed_init_val)
    elif args.embed_init == "uniform":
        embed_init = tx.random_uniform(minval=-args.embed_init_val,
                                       maxval=args.embed_init_val)

    if args.logit_init == "normal":
        logit_init = tx.random_normal(mean=0.,
                                      stddev=args.logit_init_val)
    elif args.logit_init == "uniform":
        logit_init = tx.random_uniform(minval=-args.logit_init_val,
                                       maxval=args.logit_init_val)

    f_init = None
    if args.use_f_predict:
        if args.f_init == "normal":
            f_init = tx.random_normal(mean=0., stddev=args.f_init_val)
        elif args.f_init == "uniform":
            f_init = tx.random_uniform(minval=-args.f_init_val, maxval=args.f_init_val)

    inputs = tx.Input(args.ngram_size - 1, dtype=tf.int64, name="ctx_inputs")
    labels = tx.Input(1, dtype=tf.int64, name="ctx_inputs")
    model = NNLM(inputs=inputs,
                 label_inputs=labels,
                 vocab_size=len(vocab),
                 embed_dim=args.embed_dim,
                 embed_init=embed_init,
                 embed_share=args.embed_share,
                 logit_init=logit_init,
                 h_dim=args.h_dim,
                 num_h=args.num_h,
                 h_activation=h_act,
                 h_init=h_init,
                 use_dropout=args.dropout,
                 drop_probability=args.drop_probability,
                 embed_dropout=args.embed_dropout,
                 l2_loss=args.l2_loss,
                 l2_weight=args.l2_loss_coef,
                 use_f_predict=args.use_f_predict,
                 f_init=f_init,
                 logit_bias=args.logit_bias,
                 use_nce=False)

    # Input params can be changed during training by setting their value
    # lr_param = tx.InputParam(init_value=args.lr)
    lr_param = tensorx.train.EvalStepDecayParam(value=args.lr,
                                                improvement_threshold=args.eval_threshold,
                                                less_is_better=True,
                                                decay_rate=args.lr_decay_rate,
                                                decay_threshold=args.lr_decay_threshold)
    if args.optimizer == "sgd":
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=lr_param.tensor)
    elif args.optimizer == "adam":
        optimizer = tf.train.AdamOptimizer(learning_rate=lr_param.tensor,
                                           beta1=args.optimizer_beta1,
                                           beta2=args.optimizer_beta2,
                                           epsilon=args.optimizer_epsilon)
    elif args.optimizer == "ams":
        optimizer = tx.AMSGrad(learning_rate=lr_param.tensor,
                               beta1=args.optimizer_beta1,
                               beta2=args.optimizer_beta2,
                               epsilon=args.optimizer_epsilon)

    def clip_grad_global(grads):
        grads, _ = tf.clip_by_global_norm(grads, 12)
        return grads

    def clip_grad_local(grad):
        return tf.clip_by_norm(grad, args.clip_value)

    if args.clip_grads:
        if args.clip_local:
            clip_fn = clip_grad_local
        else:
            clip_fn = clip_grad_global

    if args.clip_grads:
        model.config_optimizer(optimizer, optimizer_params=lr_param,
                               gradient_op=clip_fn,
                               global_gradient_op=not args.clip_local)
    else:
        model.config_optimizer(optimizer, optimizer_params=lr_param)

    # ======================================================================================
    # EVALUATION
    # ======================================================================================

    def eval_model(model, dataset_it, len_dataset=None, display_progress=False):
        if display_progress:
            pb = tqdm(total=len_dataset, ncols=60, position=1)
        batches_processed = 0
        sum_loss = 0
        for batch in dataset_it:
            batch = np.array(batch, dtype=np.int64)
            ctx = batch[:, :-1]
            target = batch[:, -1:]

            mean_loss = model.eval({inputs: ctx, labels: target})
            sum_loss += mean_loss

            if display_progress:
                pb.update(args.batch_size)
            batches_processed += 1

        if display_progress:
            pb.close()

        return np.exp(sum_loss / batches_processed)

    def evaluation(model: tx.Model, progress_bar, cur_epoch, step, display_progress=False):

        ppl_validation = eval_model(model,
                                    to_ngrams_batch(corpus.validation_set),
                                    validation_len,
                                    display_progress)
        res_row = {"id": args.id, "run": args.run, "epoch": cur_epoch, "step": step, "lr": lr_param.value,
                   "dataset": "validation",
                   "perplexity": ppl_validation}
        ppl_writer.writerow(res_row)

        if args.eval_test:
            # pb.write("[Eval Test Set]")
            ppl_test = eval_model(model, to_ngrams(corpus.test_set), test_len, display_progress)

            res_row = {"id": args.id, "run": args.run, "epoch": cur_epoch, "step": step, "lr": lr_param.value,
                       "dataset": "test",
                       "perplexity": ppl_test}
            ppl_writer.writerow(res_row)

        ppl_file.flush()

        if args.eval_test:
            progress_bar.set_postfix({"test PPL ": ppl_test})

        # pb.write("valid. ppl = {}".format(ppl_validation))
        return ppl_validation

    # ======================================================================================
    # TRAINING LOOP
    # ======================================================================================
    # print("Starting TensorFlow Session")

    # preparing evaluation steps
    # I use ceil because I make sure we have padded batches at the end

    epoch_step = 0
    global_step = 0
    current_epoch = 0
    patience = 0

    cfg = tf.ConfigProto()
    cfg.gpu_options.allow_growth = True
    sess = tf.Session(config=cfg)
    model.set_session(sess)
    model.init_vars()

    progress = tqdm(total=training_len * args.epochs, position=args.pid + 1, disable=not args.display_progress)

    training_data = to_ngrams_batch(corpus.training_set,
                                    epochs=args.epochs,
                                    shuffle=args.shuffle,
                                    enum_epoch=True)

    evaluations = []

    try:

        for i, ngram_batch in training_data:
            epoch = i + 1
            # Start New Epoch
            if epoch != current_epoch:
                current_epoch = epoch
                epoch_step = 0
                if args.display_progress:
                    progress.set_postfix({"epoch": current_epoch})

            # ================================================
            # EVALUATION
            # ================================================
            if epoch_step == 0:
                current_eval = evaluation(model, progress, epoch, global_step,
                                          display_progress=args.eval_progress)

                evaluations.append(current_eval)
                lr_param.update(current_eval)
                # print(lr_param.eval_history)
                # print("improvement ", lr_param.eval_improvement())

                if global_step > 0:
                    if args.early_stop and epoch > 1:
                        if lr_param.eval_improvement() < lr_param.improvement_threshold:
                            if patience >= 3:
                                break
                            patience += 1
                        else:
                            patience = 0

            # ================================================
            # TRAIN MODEL
            # ================================================
            ngram_batch = np.array(ngram_batch, dtype=np.int64)
            ctx_ids = ngram_batch[:, :-1]
            word_ids = ngram_batch[:, -1:]

            model.train({inputs: ctx_ids, labels: word_ids})
            progress.update(args.batch_size)

            epoch_step += 1
            global_step += 1

        # if not early stop, evaluate last state of the model
        if not args.early_stop or patience < 3:
            current_eval = evaluation(model, progress, epoch, epoch_step)
            evaluations.append(current_eval)
        ppl_file.close()

        if args.save_model:
            model.save_model(model_name=model_path, step=global_step, write_state=False)

        model.close_session()
        progress.close()
        tf.reset_default_graph()

        # return the best validation evaluation
        return min(evaluations)

    except Exception as e:
        traceback.print_exc()
        os.remove(ppl_file.name)
        os.remove(param_file.name)
        raise e
コード例 #6
0
ファイル: run_nnlm.py プロジェクト: davidenunes/deepsign
if args.use_f_predict:
    if args.f_init == "normal":
        f_init = tx.random_normal(mean=0., stddev=args.f_init_val)
    elif args.f_init == "uniform":
        f_init = tx.random_uniform(minval=-args.f_init_val,
                                   maxval=args.f_init_val)

model = NNLM(ctx_size=args.ngram_size - 1,
             vocab_size=len(vocab),
             embed_dim=args.embed_dim,
             embed_init=embed_init,
             embed_share=args.embed_share,
             logit_init=logit_init,
             h_dim=args.h_dim,
             num_h=args.num_h,
             h_activation=h_act,
             h_init=h_init,
             use_dropout=args.dropout,
             drop_probability=args.keep_prob,
             embed_dropout=args.embed_dropout,
             l2_loss=args.l2_loss,
             l2_weight=args.l2_loss_coef,
             use_f_predict=args.use_f_predict,
             f_init=f_init)

model_runner = tx.ModelRunner(model)

# we use an InputParam because we might want to change it during training
lr_param = tx.InputParam(value=args.lr)
if args.optimizer == "sgd":
    optimizer = tf.train.GradientDescentOptimizer(