default_model = os.path.join(os.path.dirname(__file__), "models", "baseline_rnnlm.gz") if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default="") ap.add_argument("--small", action="store_true") args = ap.parse_args() vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) model = NeuralLM(vocab.size) model.stack( RNN(hidden_size=100, output_type="sequence", hidden_activation="sigmoid", persistent_state=True, batch_size=lmdata.size, reset_state_for_input=0), FullOutputLayer(vocab.size)) if os.path.exists(args.model): model.load_params(args.model) trainer = SGDTrainer( model, { "learning_rate": LearningRateAnnealer.learning_rate(1.2), "weight_l2": 1e-7 }) annealer = LearningRateAnnealer() trainer.run(lmdata, controllers=[annealer])
"class_based_rnnlm.gz") if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default="") ap.add_argument("--small", action="store_true") args = ap.parse_args() vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) import pdb pdb.set_trace() model = NeuralLM(vocab.size) model.stack( RNN(hidden_size=100, output_type="sequence", hidden_activation='sigmoid', persistent_state=True, batch_size=lmdata.size, reset_state_for_input=0), ClassOutputLayer(output_size=100, class_size=100)) if os.path.exists(args.model): model.load_params(args.model) trainer = SGDTrainer( model, { "learning_rate": LearningRateAnnealer.learning_rate(1.2), "weight_l2": 1e-7 }) annealer = LearningRateAnnealer() trainer.run(lmdata, epoch_controllers=[annealer])
# -*- coding: utf-8 -*- import os from deepy.networks import AutoEncoder from deepy.layers import RNN, Dense from deepy.trainers import SGDTrainer, LearningRateAnnealer from util import get_data, VECTOR_SIZE, SEQUENCE_LENGTH HIDDEN_SIZE = 50 model_path = os.path.join(os.path.dirname(__file__), "models", "rnn1.gz") if __name__ == '__main__': model = AutoEncoder(rep_dim=10, input_dim=VECTOR_SIZE, input_tensor=3) model.stack_encoders( RNN(hidden_size=HIDDEN_SIZE, input_type="sequence", output_type="one")) model.stack_decoders( RNN(hidden_size=HIDDEN_SIZE, input_type="one", output_type="sequence", steps=SEQUENCE_LENGTH), Dense(VECTOR_SIZE, 'softmax')) trainer = SGDTrainer(model) annealer = LearningRateAnnealer(trainer) trainer.run(get_data(), controllers=[annealer]) model.save_params(model_path)
from deepy.layers import RNN, Dense logging.basicConfig(level=logging.INFO) resource_dir = os.path.abspath(os.path.dirname(__file__)) + os.sep + "resources" vocab_path = os.path.join(resource_dir, "ptb.train.txt") train_path = os.path.join(resource_dir, "ptb.train.txt") valid_path = os.path.join(resource_dir, "ptb.valid.txt") vocab = Vocab(char_based=True) vocab.load(vocab_path, max_size=1000) model = NeuralLM(input_dim=vocab.size, input_tensor=3) model.stack( RNN(hidden_size=100, output_type="sequence"), RNN(hidden_size=100, output_type="sequence"), Dense(vocab.size, "softmax")) if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default=os.path.join(os.path.dirname(__file__), "models", "char_rnn_model1.gz")) ap.add_argument("--sample", default="") args = ap.parse_args() if os.path.exists(args.model): model.load_params(args.model) lmdata = LMDataset(vocab, train_path, valid_path, history_len=30, char_based=True, max_tokens=300) batch = SequentialMiniBatches(lmdata, batch_size=20)
# Separate data valid_size = int(len(data) * 0.15) train_set = data[valid_size:] valid_set = data[:valid_size] dataset = SequentialDataset(train_set, valid=valid_set) dataset.pad_left(20) dataset.report() batch_set = MiniBatches(dataset) if __name__ == '__main__': model = NeuralClassifier(input_dim=26, input_tensor=3) model.stack( RNN(hidden_size=30, input_type="sequence", output_type="sequence", vector_core=0.1), RNN(hidden_size=30, input_type="sequence", output_type="sequence", vector_core=0.3), RNN(hidden_size=30, input_type="sequence", output_type="sequence", vector_core=0.6), RNN(hidden_size=30, input_type="sequence", output_type="one", vector_core=0.9), Dense(4), Softmax()) trainer = SGDTrainer(model)
from deepy.trainers import SGDTrainer, LearningRateAnnealer from deepy.layers import RNN, Dense logging.basicConfig(level=logging.INFO) resource_dir = os.path.abspath( os.path.dirname(__file__)) + os.sep + "resources" vocab_path = os.path.join(resource_dir, "ptb.train.txt") train_path = os.path.join(resource_dir, "ptb.train.txt") valid_path = os.path.join(resource_dir, "ptb.valid.txt") vocab = Vocab(char_based=True) vocab.load(vocab_path, max_size=1000) model = NeuralLM(input_dim=vocab.size, input_tensor=3) model.stack(RNN(hidden_size=100, output_type="sequence"), RNN(hidden_size=100, output_type="sequence"), Dense(vocab.size, "softmax")) if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default=os.path.join(os.path.dirname(__file__), "models", "char_rnn_model1.gz")) ap.add_argument("--sample", default="") args = ap.parse_args() if os.path.exists(args.model): model.load_params(args.model) lmdata = LMDataset(vocab,
# -*- coding: utf-8 -*- #!/usr/bin/env python # -*- coding: utf-8 -*- import os from deepy.networks import AutoEncoder from deepy.layers import RNN, Dense from deepy.trainers import SGDTrainer, LearningRateAnnealer from util import get_data, VECTOR_SIZE, SEQUENCE_LENGTH HIDDEN_SIZE = 50 model_path = os.path.join(os.path.dirname(__file__), "models", "rnn1.gz") if __name__ == '__main__': model = AutoEncoder(input_dim=VECTOR_SIZE, input_tensor=3) model.stack_encoders(RNN(hidden_size=HIDDEN_SIZE, input_type="sequence", output_type="one")) model.stack_decoders(RNN(hidden_size=HIDDEN_SIZE, input_type="one", output_type="sequence", steps=SEQUENCE_LENGTH), Dense(VECTOR_SIZE, 'softmax')) trainer = SGDTrainer(model) annealer = LearningRateAnnealer(trainer) trainer.run(get_data(), controllers=[annealer]) model.save_params(model_path)