コード例 #1
0
def train(opt):
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        # tv.transforms.ToTensor(),
        DefectAdder(mode=opt.defect_mode,
                    defect_shape=('line', ),
                    normal_only=True),
        ToTensorList(),
        NormalizeList(opt.mean, opt.std),
        # tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = tv.datasets.ImageFolder(opt.data_path, transform=transforms)
    train_dataloader = DataLoader(dataset,
                                  batch_size=opt.batch_size,
                                  shuffle=True,
                                  num_workers=opt.num_workers,
                                  drop_last=True)

    if opt.validate:
        val_transforms = tv.transforms.Compose([
            tv.transforms.Resize(opt.image_size),
            tv.transforms.CenterCrop(opt.image_size),
            # tv.transforms.ToTensor(),
            DefectAdder(mode=opt.defect_mode, defect_shape=('line', )),
            ToTensorList(),
            NormalizeList(opt.mean, opt.std),
            # tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        val_dataset = tv.datasets.ImageFolder(opt.val_path,
                                              transform=val_transforms)
        val_dataloader = DataLoader(val_dataset,
                                    batch_size=opt.batch_size,
                                    shuffle=True,
                                    num_workers=opt.num_workers,
                                    drop_last=True)
    else:
        val_dataloader = None

    map_location = lambda storage, loc: storage
    netd = Discriminator(opt)
    netg = Generater(opt)
    nets = FCN32s(n_class=2, input_channels=6)

    if opt.use_gpu:
        netd.cuda()
        netg.cuda()
        nets.cuda()

    if opt.netd_path:
        print('loading checkpoint for discriminator...')
        checkpoint = modify_checkpoint(
            netd,
            torch.load(opt.netd_path, map_location=map_location)['net'])
        netd.load_state_dict(checkpoint, strict=False)
    if opt.netg_path:
        print('loading checkpoint for generator...')
        checkpoint = modify_checkpoint(
            netg,
            torch.load(opt.netg_path, map_location=map_location)['net'])
        netg.load_state_dict(checkpoint, strict=False)

    optimizer_g = optim.Adam(netg.parameters(),
                             opt.lrg,
                             betas=(opt.beta1, 0.999))
    optimizer_d = optim.Adam(netd.parameters(),
                             opt.lrd,
                             betas=(opt.beta1, 0.999))
    optimizer_s = optim.Adam(nets.parameters(),
                             opt.lrs,
                             betas=(opt.beta1, 0.999))

    scheduler_g = torch.optim.lr_scheduler.MultiStepLR(optimizer_g,
                                                       milestones=opt.steps,
                                                       gamma=0.1)
    scheduler_d = torch.optim.lr_scheduler.MultiStepLR(optimizer_d,
                                                       milestones=opt.steps,
                                                       gamma=0.1)
    scheduler_s = torch.optim.lr_scheduler.MultiStepLR(optimizer_s,
                                                       milestones=opt.steps,
                                                       gamma=0.1)

    trainer = Trainer(opt, [netd, netg, nets],
                      [optimizer_d, optimizer_g, optimizer_s],
                      [scheduler_d, scheduler_g, scheduler_s],
                      train_dataloader, val_dataloader)
    trainer.train()
コード例 #2
0
def distributed_train(gpu, opt):
    rank = opt.nr * opt.gpus + gpu
    world_size = opt.gpus * opt.nodes
    dist.init_process_group(backend='nccl',
                            init_method='env://',
                            world_size=world_size,
                            rank=rank)

    torch.cuda.set_device(gpu)

    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        # tv.transforms.ToTensor(),
        DefectAdder(mode=opt.defect_mode,
                    defect_shape=('line', ),
                    normal_only=True),
        ToTensorList(),
        NormalizeList(opt.mean, opt.std),
        # tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = tv.datasets.ImageFolder(opt.data_path, transform=transforms)
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        dataset, num_replicas=world_size, rank=rank)
    train_dataloader = DataLoader(dataset,
                                  batch_size=opt.batch_size,
                                  shuffle=False,
                                  num_workers=opt.num_workers,
                                  drop_last=True,
                                  sampler=train_sampler)

    if opt.validate:
        val_transforms = tv.transforms.Compose([
            tv.transforms.Resize(opt.image_size),
            tv.transforms.CenterCrop(opt.image_size),
            # tv.transforms.ToTensor(),
            DefectAdder(mode=opt.defect_mode, defect_shape=('line', )),
            ToTensorList(),
            NormalizeList(opt.mean, opt.std),
            # tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        val_dataset = tv.datasets.ImageFolder(opt.val_path,
                                              transform=val_transforms)
        val_sampler = torch.utils.data.distributed.DistributedSampler(
            val_dataset, num_replicas=world_size, rank=rank)
        val_dataloader = DataLoader(val_dataset,
                                    batch_size=opt.batch_size,
                                    shuffle=False,
                                    num_workers=opt.num_workers,
                                    drop_last=True,
                                    sampler=val_sampler)
    else:
        val_dataloader = None

    map_location = lambda storage, loc: storage
    netd = Discriminator(opt)
    netg = Generater(opt)
    nets = FCN32s(n_class=2, input_channels=6)

    if opt.use_gpu:
        netd.cuda(gpu)
        netg.cuda(gpu)
        nets.cuda(gpu)

    netd = nn.parallel.DistributedDataParallel(netd, device_ids=[gpu])
    netg = nn.parallel.DistributedDataParallel(netg, device_ids=[gpu])
    nets = nn.parallel.DistributedDataParallel(nets, device_ids=[gpu])

    if opt.netd_path:
        print('loading checkpoint for discriminator...')
        checkpoint = modify_checkpoint(
            netd,
            torch.load(opt.netd_path, map_location=map_location)['net'])
        netd.load_state_dict(checkpoint, strict=False)
    if opt.netg_path:
        print('loading checkpoint for generator...')
        checkpoint = modify_checkpoint(
            netg,
            torch.load(opt.netg_path, map_location=map_location)['net'])
        netg.load_state_dict(checkpoint, strict=False)

    optimizer_g = optim.Adam(netg.parameters(),
                             opt.lrg,
                             betas=(opt.beta1, 0.999))
    optimizer_d = optim.Adam(netd.parameters(),
                             opt.lrd,
                             betas=(opt.beta1, 0.999))
    optimizer_s = optim.Adam(nets.parameters(),
                             opt.lrs,
                             betas=(opt.beta1, 0.999))

    scheduler_g = torch.optim.lr_scheduler.MultiStepLR(optimizer_g,
                                                       milestones=opt.steps,
                                                       gamma=0.1)
    scheduler_d = torch.optim.lr_scheduler.MultiStepLR(optimizer_d,
                                                       milestones=opt.steps,
                                                       gamma=0.1)
    scheduler_s = torch.optim.lr_scheduler.MultiStepLR(optimizer_s,
                                                       milestones=opt.steps,
                                                       gamma=0.1)

    criterion = nn.BCELoss()
    contrast_criterion = nn.MSELoss()

    true_labels = torch.ones(opt.batch_size)
    fake_labels = torch.zeros(opt.batch_size)

    if opt.use_gpu:
        criterion.cuda()
        contrast_criterion.cuda()
        true_labels, fake_labels = true_labels.cuda(), fake_labels.cuda()
        # fix_noises, noises = fix_noises.cuda(), noises.cuda()

    trainer = Trainer(opt, [netd, netg, nets],
                      [optimizer_d, optimizer_g, optimizer_s],
                      [scheduler_d, scheduler_g, scheduler_s],
                      train_dataloader, val_dataloader)
    trainer.train()