コード例 #1
0
    def load_data(self, file, solidity_threshold, irregularity_threshold):

        data_all = getData(file)
        if not "area" in data_all.keys():
            data_all["area"] = data_all["long_axis"] * data_all[
                "short_axis"] * np.pi / 4

        if len(data_all) == 0:
            print("no data loaded from file '%s'" % file)
            return pd.DataFrame(), pd.DataFrame()
        # use a "read sol from config flag here
        data_mean, config_eval = load_all_data_new(
            self.db.getImage(0).get_full_filename().replace(
                ".tif", "_evaluated_new.csv"),
            do_group=False,
            do_excude=False)
        return data_all, data_mean
コード例 #2
0
    return file_pairs

file_pairs = []
file_pairs.extend(getFolderPairs(r"\\131.188.117.119\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\march_2021\2021_02_24_NIH3T3_LatrunculinB_doseresponse\*"))
file_pairs.extend(getFolderPairs(r"\\131.188.117.119\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\march_2021\2021_03_01_NIH3T3_LatrunculinB_doseresponse\*"))
file_pairs.extend(getFolderPairs(r"\\131.188.117.119\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\march_2021\2021_03_10_NIH3T3_LatrunculinB_doseresponse\*"))
file_pairs.extend(getFolderPairs(r"\\131.188.117.119\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\march_2021\2021_03_15_NIH3T3_LatrunculinB_doseresponse\*"))


all_data = []

for row_index, pressure in enumerate([0.5, 1, 2, 3]):
    plt.subplot(4, 1, row_index+1)
    for index, paths in enumerate(file_pairs):
        try:
            data0, config0 = load_all_data_new(paths[0], solidity_threshold=0.7, irregularity_threshold=1.3, pressure=pressure)
        except (FileNotFoundError, ValueError) as err:
            print("ERROR", paths[0], err)
            continue
        try:
            data1, config1 = load_all_data_new(paths[1], solidity_threshold=0.7, irregularity_threshold=1.3, pressure=pressure)
        except (FileNotFoundError, ValueError) as err:
            print("ERROR", paths[1], err)
            continue

        ratios = []
        # bootstrap with matched histograms
        for i in range(3):
            data0b, data1b = bootstrap_match_hist([data0, data1], bin_width=25, max_bin=300, property="stress")
            ratios.append(get_mode_stats(data0b.k_cell)[0]/get_mode_stats(data1b.k_cell)[0])
コード例 #3
0
                               agg="logmode",
                               color=color[0],
                               label=label)
    plt.ylim(bottom=0)
    plt.axes([0.5, .2, 0.5, 0.5], label=f"{parameter}_k")
    plotMeasurementOfParameter(data,
                               parameter,
                               "w_alpha_cell",
                               agg="mode",
                               color=color[1],
                               label=label)
    plt.ylim(bottom=0)


data_bleb, config = load_all_data_new([
    r"\\131.188.117.96\biophysDS\meroles\SPRING2021\12.04.2021_THP1_CytoD_10µM_*\**\*_evaluated_new.csv"
],
                                      pressure=2)
data_dmso, config = load_all_data_new(
    [
        r"\\131.188.117.96\biophysDS\meroles\SPRING2021\24.03.2021_THP1_2%Alginate\**\*_evaluated_new.csv",
        r"\\131.188.117.96\biophysDS\meroles\SPRING2021\30.03.2021_THP1_Ag2%\**\*_evaluated_new.csv",
        #r"\\131.188.117.96\biophysDS\meroles\SPRING2021\30.03.2021_THP1_Ag2%_2\**\*_evaluated_new.csv",
        r"\\131.188.117.96\biophysDS\meroles\SPRING2021\30.03.2021_THP1_Ag2%_3\**\*_evaluated_new.csv",
    ],
    pressure=2)
print(data_bleb.pressure.unique(), data_dmso.pressure.unique())
plot_pair(data_bleb, "time", ["C0", "C0"], label="CytoD")
plot_pair(data_dmso, "time", ["C3", "C3"], label="Control")
plt.legend()
#% start: automatic generated code from pylustrator
plt.figure(1).ax_dict = {ax.get_label(): ax for ax in plt.figure(1).axes}
コード例 #4
0
    def __init__(self, *args, **kwargs):
        clickpoints.Addon.__init__(self, *args, **kwargs)

        # open the window
        self.layout = QtWidgets.QVBoxLayout(self)
        self.resize(1300, 400)
        self.show()

        # Setting up marker Types
        self.marker_type_cell1 = self.db.setMarkerType("cell", "#0a2eff", self.db.TYPE_Ellipse)
        self.pen_neutral = QtGui.QPen(QtGui.QColor("#0a2eff"), 3)
        self.marker_type_cell2 = self.db.setMarkerType("cell include", "#25c638", self.db.TYPE_Ellipse)
        self.pen_include = QtGui.QPen(QtGui.QColor("#25c638"), 3)
        self.marker_type_cell3 = self.db.setMarkerType("cell exclude", "#ff0000", self.db.TYPE_Ellipse)
        self.pen_exclude = QtGui.QPen(QtGui.QColor("#ff0000"), 3)
        self.cp.reloadTypes()

        # set the title and layout
        self.setWindowTitle("DeformationCytometer - ClickPoints")

        # load the data
        self.filename = self.db.getImage(0).get_full_filename()[:-4] + "_evaluated_new.csv"
        self.data, self.config = load_all_data_new(self.db.getImage(0).get_full_filename().replace(".tif", "_evaluated_new.csv"), do_group=False, do_excude=False)
        if "manual_exclude" not in self.data:
            self.data["manual_exclude"] = np.nan

        print("loading finished", self.db.getImage(0).get_full_filename())

        # add a label and the progressbar
        self.label = QtWidgets.QLabel("Cell")
        self.layout.addWidget(self.label)
        self.progressbar = QtWidgets.QProgressBar()
        self.progressbar.setRange(0, len(self.data) - 1)
        self.layout.addWidget(self.progressbar)

        pixel_size = self.config["pixel_size"]
        # remove previous markers of the time in case there are any (e.g. when the addon is activated twice)
        self.db.deleteEllipses(type=self.marker_type_cell1)
        self.db.deleteEllipses(type=self.marker_type_cell2)
        self.db.deleteEllipses(type=self.marker_type_cell3)
        self.markers = []

        if 0:
            # add all markers at once
            self.markers = self.db.setEllipses(
                frame=list(np.array(self.data.frames).astype(np.int)),
                x=np.array(self.data.x),
                y=np.array(self.data.y),
                width=np.array(self.data.long_axis / pixel_size),
                height=np.array(self.data.short_axis / pixel_size),
                angle=np.array(self.data.angle),
                type=self.marker_type_cell1
            )
        if 0:
            # iteratively create the markers
            for i, d in self.data.iterrows():
                self.progressbar.setValue(i)
                self.label.setText(f"Cell {i}")
                self.cp.window.app.processEvents()
                type_ = self.marker_type_cell3 if d.manual_exclude == 1 else self.marker_type_cell2 if d.manual_exclude == 0 else self.marker_type_cell1
                ell = self.db.setEllipse(frame=int(d.frames), x=d.x, y=d.y,
                                         width=d.long_axis / pixel_size, height=d.short_axis / pixel_size,
                                         text=f"{i} {d.cell_id}",
                                         angle=d.angle, type=type_)
                self.markers.append(ell)
        self.index = 0

        self.view = QExtendedGraphicsView()
        self.layout.addWidget(self.view)
        # self.view.zoomEvent = self.zoomEvent
        # self.view.panEvent = self.panEvent
        self.local_scene = self.view.scene
        self.origin = self.view.origin

        self.cell_rects = {}

        self.focus_rect = QtWidgets.QGraphicsRectItem(-self.w / 2, -self.h / 2, self.w, self.h * 2, self.origin)
        self.focus_rect.setPen(QtGui.QPen(QtGui.QColor(255, 255, 0), 8))
        self.focus_rect.setZValue(10)

        self.view.setExtend(self.w * 5, self.h*2)
        self.view.fitInView()

        self.start_pos = 0
        self.current_pos = self.index - 0.1
        self.timer_percent = 0

        self.view.keyPressEvent = self.keyPressEvent2

        self.slider = QtWidgets.QSlider()
        self.slider.setOrientation(QtCore.Qt.Horizontal)
        self.layout.addWidget(self.slider)
        self.slider.setRange(0, len(self.data)-1)
        def setIndex(x):
            if x != self.index:
                self.index = x
                self.focusOnCell()
        self.slider.valueChanged.connect(setIndex)

        layout = QtWidgets.QHBoxLayout()
        self.layout.addLayout(layout)
        self.auto_save = QtWidgets.QCheckBox()
        layout.addWidget(self.auto_save)
        self.auto_save_label = QtWidgets.QLabel("autosave")
        layout.addWidget(self.auto_save_label)
        self.button_save = QtWidgets.QPushButton("save")
        self.button_save.clicked.connect(self.save)
        layout.addWidget(self.button_save)
        layout.addStretch()

        self.image_loaded.connect(self.addImage)

        self.focusOnCell()
コード例 #5
0
from deformationcytometer.evaluation.helper_functions import plotDensityScatter, load_all_data, all_plots_same_limits, get_cell_properties  #, load_all_data_new
from deformationcytometer.evaluation.helper_functions import plot_velocity_fit, plot_density_hist, \
    plotDensityLevels, plotBinnedData, plot_joint_density, split_axes, load_all_data_new
import numpy as np
import pylustrator
pylustrator.start()

if 0:
    """"""
    #\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\january_2021\2021_03_01_NIH3T3_LatrunculinB_doseresponse\100 nM - Kontrolle\2021_03_01_12_21_37.tif
    #\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\january_2021\2021_03_01_NIH3T3_LatrunculinB_doseresponse\100 nM - Kontrolle\2021_03_01_12_24_36.tif
    #\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\january_2021\2021_03_01_NIH3T3_LatrunculinB_doseresponse\3.162 nM - Kontrolle\2021_03_01_14_20_57.tif
    #\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\january_2021\2021_03_01_NIH3T3_LatrunculinB_doseresponse\316.2 nM - Kontrolle\2021_03_01_11_45_42.tif
    from deformationcytometer.evaluation.helper_functions import correctCenter
    data, config = load_all_data_new(
        r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\january_2021\2021_03_01_NIH3T3_LatrunculinB_doseresponse\100 nM - Kontrolle\2021_03_01_12_21_37_result.txt"
    )
    correctCenter(data, config)
    d = data
    y_pos = d.rp
    vel = d.velocity
    valid_indices = np.isfinite(y_pos) & np.isfinite(vel)

    plt.plot(y_pos, vel, "o")
    plt.show()
    """"""

experiment = {}

#if parent-subfolders exist:
import glob
コード例 #6
0
    rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\september_2020\2020_09_16_alginate2%_NIH_tanktreading\1\*_result.txt"
)

data = data[np.abs(data.velocity - data.velocity_fitted) < 1.5]

plt.subplot(241)
plot_velocity_fit(data)
#plt.legend(title="pressure (bar)")
plt.subplot(242)
plot_velocity_fit_dot(data)
plt.subplot(243)
plot_viscisity(data)
plt.subplot(244)

data, config = load_all_data_new(
    rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\september_2020\2020_09_16_alginate2%_NIH_tanktreading\1\*_result.txt"
)
plot_viscisoty_over_shear_rate(data)

plot_tt(plt.subplot(245), plt.subplot(246))

plt.subplot(247)
plot_omega(data)


def func(x, a, b):
    return x / 2 * 1 / (1 + a * x**b)


x = [0.113, 0.45]
xx = np.arange(0, 500)
コード例 #7
0
                               parameter,
                               "w_k_cell",
                               color[0],
                               label=label)
    plt.ylim(bottom=0)
    plt.axes([0.5, .2, 0.5, 0.5], label=f"{parameter}_k")
    plotMeasurementOfParameter(data,
                               parameter,
                               "w_alpha_cell",
                               color[1],
                               label=label)
    plt.ylim(bottom=0)


data_bleb, config = load_all_data_new([
    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\september_2020\2020_09_30_alginate2%_NIH3T3_blebbistatin\inlet\**\*.tif"
],
                                      pressure=3)
data_dmso, config = load_all_data_new([
    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\september_2020\2020_09_30_alginate2%_NIH3T3_DMSO\inlet\**\*.tif"
],
                                      pressure=3)

plot_pair(data_bleb, "time", ["C0", "C0"], label="Blebbistatin")
plot_pair(data_dmso, "time", ["C3", "C3"], label="DMSO")
plt.legend()
#% start: automatic generated code from pylustrator
plt.figure(1).ax_dict = {ax.get_label(): ax for ax in plt.figure(1).axes}
import matplotlib as mpl
plt.figure(1).set_size_inches(12.000000 / 2.54, 6.000000 / 2.54, forward=True)
plt.figure(1).ax_dict["time_alpha"].set_ylim(0.0, 125.0)
plt.figure(1).ax_dict["time_alpha"].set_position(
コード例 #8
0
                               agg="median",
                               color=color[0],
                               label=label)
    plt.ylim(bottom=0)
    plt.axes([0.5, .2, 0.5, 0.5], label=f"{parameter}_k")
    plotMeasurementOfParameter(data,
                               parameter,
                               "w_alpha_cell",
                               agg="mean",
                               color=color[1],
                               label=label)
    plt.ylim(bottom=0)


data, config = load_all_data_new([
    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\flourescence beads\2021.4.14\**\*_evaluated_new.csv"
])
data.pressure = np.round(data.pressure, 2)
plot_pair(data, "pressure", ["C0", "C1"])

#% start: automatic generated code from pylustrator
plt.figure(1).ax_dict = {ax.get_label(): ax for ax in plt.figure(1).axes}
import matplotlib as mpl

plt.figure(1).set_size_inches(12.000000 / 2.54, 5.300000 / 2.54, forward=True)
plt.figure(1).ax_dict["pressure_alpha"].set_xlim(0.0, 0.52)
plt.figure(1).ax_dict["pressure_alpha"].set_ylim(0.0, 10.0)
plt.figure(1).ax_dict["pressure_alpha"].set_position(
    [0.125368, 0.310687, 0.364634, 0.554430])
plt.figure(1).ax_dict["pressure_alpha"].spines['right'].set_visible(False)
plt.figure(1).ax_dict["pressure_alpha"].spines['top'].set_visible(False)
コード例 #9
0
    plt.ylim(bottom=0)
    if scaling == "semilogx":
        plt.semilogx()
    plt.axes([0.55, .2, 0.4, 0.5], label=f"{parameter}_k")
    plotMeasurementOfParameter(data, parameter, "w_alpha_cell", agg="mode", color=color[1], label=label)
    plt.ylim(bottom=0)
    if scaling == "semilogx":
        plt.semilogx()

if 0:
    data, config = load_all_data_new([
    r"\\131.188.117.96\biophysDS\meroles\SPRING2021\24.03.2021_THP1_2%Alginate\**\*_evaluated_new.csv",
    r"\\131.188.117.96\biophysDS\meroles\SPRING2021\30.03.2021_THP1_Ag2%\**\*_evaluated_new.csv",
    #r"\\131.188.117.96\biophysDS\meroles\SPRING2021\30.03.2021_THP1_Ag2%_2\**\*_evaluated_new.csv",
    r"\\131.188.117.96\biophysDS\meroles\SPRING2021\30.03.2021_THP1_Ag2%_3\**\*_evaluated_new.csv",

    r"\\131.188.117.96\biophysDS\meroles\SPRING2021\22.04.2021_THP1_CytoD_*\**\*_evaluated_new.csv",
    r"\\131.188.117.96\biophysDS\meroles\SPRING2021\21.04.2021_THP1_Cyto*\**\*_evaluated_new.csv",
    r"\\131.188.117.96\biophysDS\meroles\SPRING2021\21.04.2021_THP1_*Cyto\**\*_evaluated_new.csv",
    r"\\131.188.117.96\biophysDS\meroles\SPRING2021\23.04.2021_THP1_Cyto*M*\**\*_evaluated_new.csv",
    ])

data, config = load_all_data_new([
# CONTROL
r"\\131.188.117.96\biophysDS\meroles\SPRING2021\21.04.2021_THP1_alginate2%",

# 10nM cytoD
r"\\131.188.117.96\biophysDS\meroles\SPRING2021\22.04.2021_THP1_CytoD_10nM",

# 100nM cytoD
r"\\131.188.117.96\biophysDS\meroles\SPRING2021\22.04.2021_THP1_CytoD_100nM",
コード例 #10
0
    #r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_07_27_alginate2.0%_dmem_NIH_3T3\*\*_result.txt",
    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_07_28_alginate2.0%_dmem_NIH_3T3\*\*_result.txt",
    #r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_10_28_alginate2.0%_dmem_NIH_3T3\*\*_result.txt",
    #r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_10_30_alginate2.0%_dmem_NIH_3T3\*\*_result.txt",
]
[
    #    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\2020_july\2020_07_29_aslginate2%_NIH_diff_x_position_2\inlet\[0-9]\*_result.txt",
    #    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\2020_july\2020_07_29_aslginate2%_NIH_diff_x_position_3\inlet\[0-9]\*_result.txt",
    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\september_2020\2020_09_16_alginate2%_NIH_tanktreading\*\*_result.txt",
]

numbers = []
data_list = []
config_list = []
for index, pressure in enumerate([1, 2, 3]):
    data, config = load_all_data_new(alg20, pressure=pressure)
    data_list.append(data)
    config_list.append(config)

ranges = [
    np.arange(10, 80, 20),
    np.arange(10, 180, 20),
    np.arange(10, 280, 20),
]
colors = [
    "#d68800",
    "#d40000",
    "#b00038",
]

for index, pressure in enumerate([3]):
コード例 #11
0
import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent.parent))

import pandas as pd
import matplotlib.pyplot as plt
from deformationcytometer.evaluation.helper_functions import load_all_data, load_all_data_new, bootstrap_match_hist
import numpy as np
import pylustrator

pylustrator.start()

data, config = load_all_data_new([
    fr"\\131.188.117.96\biophysDS\meroles\SPRING2021\24.03.2021_THP1_1.5%Alginate\**\*_evaluated_new.csv",
    fr"\\131.188.117.96\biophysDS\meroles\SPRING2021\24.03.2021_THP1_2%Alginate\**\*_evaluated_new.csv",
    fr"\\131.188.117.96\biophysDS\meroles\SPRING2021\25.03.2021_THP1_2.5%Alginate\**\*_evaluated_new.csv",
    fr"\\131.188.117.96\biophysDS\meroles\SPRING2021\30.03.2021_THP1_Ag2%\**\*_evaluated_new.csv",
    fr"\\131.188.117.96\biophysDS\meroles\SPRING2021\30.03.2021_THP1_Ag2%_3\**\*_evaluated_new.csv",
])


def plotMeasurementOfParameter(data, parameter, value, color=None):
    k_cell = data.groupby([parameter,
                           "measurement_id"]).median()[value].reset_index()
    k_cell_mean = k_cell.groupby(parameter).mean()
    l = plt.errorbar(k_cell_mean.index,
                     k_cell_mean.values,
                     k_cell.groupby(parameter).sem().values[:, 0],
                     capsize=3,
                     color=color,
                     zorder=2)
コード例 #12
0
from pathlib import Path

from deformationcytometer.evaluation.helper_functions import plotDensityScatter, load_all_data_new, get_cell_properties
from deformationcytometer.evaluation.helper_functions import plot_velocity_fit, plot_density_hist, \
    plotDensityLevels, plotBinnedData
settings_name = "strain_vs_stress_clean"
""" loading data """

# reading commandline arguments if executed from terminal
file, irregularity_threshold, solidity_threshold = read_args_evaluate()

# get the results file (by command line parameter or user input dialog)
datafile = getInputFile(filetype="csv file (*_evaluated_new.csv)", settings_name=settings_name, video=file)
print("evaluate file", datafile)
# load the data and the config
data, config = load_all_data_new(datafile)

plt.figure(0, (10, 8))

plt.subplot(2, 3, 1)
plt.cla()
plot_velocity_fit(data)
plt.text(0.9, 0.9, f"$\\eta_0$ {data.eta0[0]:.2f}\n$\\delta$ {data.delta[0]:.2f}\n$\\tau$ {data.tau[0]:.2f}", transform=plt.gca().transAxes, va="top", ha="right")

plt.subplot(2, 3, 2)
plt.cla()
plotDensityScatter(data.stress, data.epsilon)
plotBinnedData(data.stress, data.epsilon, bins=np.arange(0, 300, 10))
plt.xlabel("stress (Pa)")
plt.ylabel("strain")
コード例 #13
0
pylustrator.start()
""" NIH3T3 """

fit_data = []
x = []
# iterate over all times
for index, time in enumerate(range(2, 13, 1)):
    f = []
    # iterate over the different experiment paths
    for path in [
            rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\2020_may\2020_05_22_alginateDMEM2%\{time}\*_result.txt",
            rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\august_2020\2020_08_19_alginate2%_overtime_2\{time}\*_result.txt",
    ]:
        # get the data and the fit parameters
        data, config = load_all_data_new(path, pressure=1)
        data, config = load_all_data_new(
            rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\2020_may\**\*_result.txt",
            pressure=1)

        data1 = data[data.pressure == 1]
        #f.append([np.mean(data.alpha_cell), np.mean(np.log10(data.k_cell))])
        f.append([np.mean(data.alpha_cell), np.nanmedian(data.k_cell)])

    x.append(time * 5)
    fit_data.append(f)

fit_data = np.array(fit_data)

# plot the fit data in the two different plots
for i in range(2):
コード例 #14
0
    def selected(self, name):
        plt.clf()
        if name.endswith(".tif"):
            data, config = load_all_data_new(name.replace(
                ".tif", "_evaluated_new.csv"),
                                             do_excude=False)

            def get_mode_stats(x):
                from scipy import stats
                from deformationcytometer.evaluation.helper_functions import bootstrap_error
                x = np.array(x)
                print("a", x.shape)
                if len(x.shape) == 1:
                    x = x[~np.isnan(x)]
                print("b", x.shape)

                def get_mode(x):
                    kde = stats.gaussian_kde(x)
                    print(x.shape)
                    print(np.argmax(kde(x)))
                    return x[..., np.argmax(kde(x))]

                mode = get_mode(x)
                # err = bootstrap_error(x, get_mode, repetitions=2)
                return mode

            from scipy.special import gamma

            def fit(omega, k, alpha):
                omega = np.array(omega)
                G = k * (1j * omega)**alpha * gamma(1 - alpha)
                return np.real(G), np.imag(G)

            def cost(p):
                Gp1, Gp2 = fit(data.omega_weissenberg, *p)
                #return np.sum(np.abs(np.log10(data.w_Gp1) - np.log10(Gp1))) + np.sum(
                #    np.abs(np.log10(data.w_Gp2) - np.log10(Gp2)))
                return np.sum(
                    (np.log10(data.w_Gp1) - np.log10(Gp1))**2) + np.sum(
                        (np.log10(data.w_Gp2) - np.log10(Gp2))**2)

            from scipy.optimize import minimize
            res = minimize(
                cost,
                [np.median(data.w_k_cell),
                 np.mean(data.w_alpha_cell)])  #, bounds=([0, np.inf], [0, 1]))
            print(res)

            pair_median_mean = [
                np.median(data.w_k_cell),
                np.mean(data.w_alpha_cell)
            ]
            pair_fit = [res.x[0], res.x[1]]
            pair_2dmode = get_mode_stats(
                [np.log10(data.w_k_cell), data.w_alpha_cell])
            pair_2dmode[0] = 10**pair_2dmode[0]
            print("pair_median_mean", pair_median_mean)
            print("pair_fit", pair_fit)
            print("pair_2dmode", pair_2dmode)

            plt.subplot(3, 3, 1)
            plot_velocity_fit(data)
            if "vel_fit_error" in data.iloc[0]:
                plt.text(0.8,
                         0.8,
                         f'{data.iloc[0]["vel_fit_error"]:.0f}',
                         transform=plt.gca().transAxes)

            plt.subplot(3, 3, 2)
            plt.axline([0, 0], slope=1, color="k")
            plt.plot(data.omega, data.omega_weissenberg, "o", ms=1)
            plt.xlabel("omega")
            plt.ylabel("omega weissenberg")

            plt.subplot(3, 3, 3)
            plotDensityScatter(data.stress, data.epsilon)
            plotBinnedData(data.stress,
                           data.epsilon,
                           bins=np.arange(0, 300, 10))
            plt.xlabel("stress (Pa)")
            plt.ylabel("strain")

            plt.subplot(3, 3, 4)
            plt.loglog(data.omega_weissenberg,
                       data.w_Gp1,
                       "o",
                       alpha=0.25,
                       ms=1)
            plt.loglog(data.omega_weissenberg,
                       data.w_Gp2,
                       "o",
                       alpha=0.25,
                       ms=1)

            xx = [
                10**np.floor(np.log10(np.min(data.w_Gp1))),
                10**np.ceil(np.log10(np.max(data.w_Gp1)))
            ]
            plt.plot(xx, fit(xx, *pair_fit)[0], "k-", lw=0.8)
            plt.plot(xx, fit(xx, *pair_fit)[1], "k--", lw=0.8)

            plt.plot(xx, fit(xx, *pair_median_mean)[0], "r-", lw=0.8)
            plt.plot(xx, fit(xx, *pair_median_mean)[1], "r--", lw=0.8)

            plt.plot(xx, fit(xx, *pair_2dmode)[0], "c-", lw=0.8)
            plt.plot(xx, fit(xx, *pair_2dmode)[1], "c--", lw=0.8)

            plt.ylabel("G' / G''")
            plt.xlabel("angular frequency")

            logk, a = get_mode_stats(
                [np.log10(data.w_k_cell), data.w_alpha_cell])

            plt.subplot(3, 3, 5)
            plt.cla()
            plt.xlim(0, 4)
            plot_density_hist(np.log10(data.w_k_cell), color="C0")
            plt.axvline(np.log10(pair_fit[0]), color="k")
            plt.axvline(np.log10(pair_median_mean[0]), color="r")
            plt.axvline(np.log10(pair_2dmode[0]), color="c")
            plt.xlabel("log10(k)")
            plt.ylabel("relative density")
            plt.text(
                0.9,
                0.9,
                f"mean(log10(k)) {np.mean(np.log10(data.w_k_cell)):.2f}\nstd(log10(k)) {np.std(np.log10(data.w_k_cell)):.2f}\nmean(k) {np.mean(data.k_cell):.2f}\nstd(k) {np.std(data.k_cell):.2f}\n",
                transform=plt.gca().transAxes,
                va="top",
                ha="right")

            plt.subplot(3, 3, 6)
            plt.cla()
            plt.xlim(0, 1)
            plot_density_hist(data.w_alpha_cell, color="C1")
            plt.xlabel("alpha")
            plt.axvline(pair_fit[1], color="k")
            plt.axvline(pair_median_mean[1], color="r")
            plt.axvline(pair_2dmode[1], color="c")
            plt.text(
                0.9,
                0.9,
                f"mean($\\alpha$) {np.mean(data.w_alpha_cell):.2f}\nstd($\\alpha$) {np.std(data.w_alpha_cell):.2f}\n",
                transform=plt.gca().transAxes,
                va="top",
                ha="right")

            plt.subplot(3, 3, 7)
            plt.cla()
            plotDensityScatter(np.log10(data.w_k_cell), data.w_alpha_cell)
            plt.axvline(np.log10(pair_fit[0]), color="k")
            plt.axhline(pair_fit[1], color="k", label="fit")
            plt.axvline(np.log10(pair_median_mean[0]), color="r")
            plt.axhline(pair_median_mean[1], color="r", label="median")
            plt.axvline(np.log10(pair_2dmode[0]), color="c")
            plt.axhline(pair_2dmode[1], color="c", label="2dmode")
            plt.legend()

            print("doublemode",
                  get_mode_stats([np.log10(data.w_k_cell), data.w_alpha_cell]))
            plt.xlim(1, 3)
            plt.ylim(0, .5)

            plt.tight_layout()
            #plt.plot(data.rp, data.vel)
            """"""
            from deformationcytometer.includes.RoscoeCoreInclude import getRatio
            from deformationcytometer.includes.fit_velocity import getFitXYDot
            eta0 = data.iloc[0].eta0
            alpha = data.iloc[0].delta
            tau = data.iloc[0].tau

            pressure = data.iloc[0].pressure

            def func(x, a, b):
                return x / 2 * 1 / (1 + a * x**b)

            def getFitLine(pressure, p):
                config = {
                    "channel_length_m": 5.8e-2,
                    "channel_width_m": 186e-6
                }
                x, y = getFitXYDot(config, np.mean(pressure), p)
                return x, y

            channel_pos, vel_grad = getFitLine(pressure, [eta0, alpha, tau])
            vel_grad = -vel_grad
            vel_grad = vel_grad[channel_pos > 0]
            channel_pos = channel_pos[channel_pos > 0]

            omega = func(np.abs(vel_grad), *[0.113, 0.45])
            import scipy

            k_cell, alpha_cell = pair_fit

            mu1_ = k_cell * omega**alpha_cell * scipy.special.gamma(
                1 - alpha_cell) * np.cos(np.pi / 2 * alpha_cell)
            eta1_ = k_cell * omega**alpha_cell * scipy.special.gamma(
                1 - alpha_cell) * np.sin(np.pi / 2 * alpha_cell) / omega

            ratio, alpha1, alpha2, strain, stress, theta, ttfreq, eta, vdot = getRatio(
                eta0, alpha, tau, vel_grad, mu1_, eta1_)
            plt.subplot(3, 3, 3)
            plt.plot(stress, strain, "-k")

            k_cell, alpha_cell = pair_median_mean

            mu1_ = k_cell * omega**alpha_cell * scipy.special.gamma(
                1 - alpha_cell) * np.cos(np.pi / 2 * alpha_cell)
            eta1_ = k_cell * omega**alpha_cell * scipy.special.gamma(
                1 - alpha_cell) * np.sin(np.pi / 2 * alpha_cell) / omega

            ratio, alpha1, alpha2, strain, stress, theta, ttfreq, eta, vdot = getRatio(
                eta0, alpha, tau, vel_grad, mu1_, eta1_)
            plt.subplot(3, 3, 3)
            plt.plot(stress, strain, "-r")

            k_cell, alpha_cell = pair_2dmode

            mu1_ = k_cell * omega**alpha_cell * scipy.special.gamma(
                1 - alpha_cell) * np.cos(np.pi / 2 * alpha_cell)
            eta1_ = k_cell * omega**alpha_cell * scipy.special.gamma(
                1 - alpha_cell) * np.sin(np.pi / 2 * alpha_cell) / omega

            ratio, alpha1, alpha2, strain, stress, theta, ttfreq, eta, vdot = getRatio(
                eta0, alpha, tau, vel_grad, mu1_, eta1_)
            plt.subplot(3, 3, 3)
            plt.plot(stress, strain, "-c")

        self.canvas.draw()
コード例 #15
0
import pandas as pd
import matplotlib.pyplot as plt
from deformationcytometer.evaluation.helper_functions import load_all_data, load_all_data_new, bootstrap_match_hist
import numpy as np
import pylustrator

pylustrator.start()

data, config = load_all_data_new([
        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\august_2020\2020_08_18_alginate2%_overtime_1\*\*_evaluated_new.csv",
        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\august_2020\2020_08_18_alginate2%_overtime_2\*\*_evaluated_new.csv",
        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\august_2020\2020_08_19_alginate2%_overtime_1\*\*_evaluated_new.csv",
        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\august_2020\2020_08_19_alginate2%_overtime_2\*\*_evaluated_new.csv",
        #rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\2020_may\2020_05_22_alginateDMEM2%\*\*_evaluated_new.csv",
#        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\2020_july\2020_07_21_alginate2%_dmem_NIH_time_1\*\*_evaluated_new.csv",
        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\2020_july\2020_07_21_alginate2%_dmem_NIH_time_2\*\*_evaluated_new.csv",
        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\2020_july\2020_07_21_alginate2%_dmem_NIH_time_3\*\*_evaluated_new.csv",
#        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope4\2020_may\2020_05_22_alginateDMEM2%\*\*_evaluated_new.csv",
#        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\august_2020\2020_08_18_alginate2%_overtime_1\*\*_evaluated_new.csv",
#        rf"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\microscope_1\august_2020\2020_08_19_alginate2%_overtime_2\*\*_evaluated_new.csv",
    ])

data_alg, config = load_all_data_new([
    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_07_24_alginate2.5%_dmem_NIH_3T3\*\*_evaluated_new.csv",
    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_07_27_alginate2.5%_dmem_NIH_3T3\*\*_evaluated_new.csv",
    # r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_10_14_alginate2.5%_dmem_NIH_3T3\*\*_evaluated_new.csv",
    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_10_28_alginate2.5%_dmem_NIH_3T3\*\*_evaluated_new.csv",
    # r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_10_30_alginate2.5%_dmem_NIH_3T3\*\*_evaluated_new.csv",

    r"\\131.188.117.96\biophysDS\emirzahossein\microfluidic cell rhemeter data\evaluation\diff % alginate\2020_07_27_alginate2.0%_dmem_NIH_3T3\*\*_evaluated_new.csv",