コード例 #1
0
    def test_cut_or_padding(self):
        # test for 1d
        origin_1_t = tf.placeholder(dtype=tf.int32, shape=[None])
        after_1_t = cut_or_padding(origin_1_t, 3)

        with self.cached_session(use_gpu=False, force_gpu=False) as sess:
            # test for padding
            res = sess.run(after_1_t, feed_dict={origin_1_t: [1, 2]})
            self.assertAllEqual(res, [1, 2, 0])

            # test for cut
            res = sess.run(after_1_t, feed_dict={origin_1_t: [1, 2, 3, 4, 5]})
            self.assertAllEqual(res, [1, 2, 3])

        # test for 2d
        origin_2_t = tf.placeholder(dtype=tf.int32, shape=[None, None])
        after_2_t = cut_or_padding(origin_2_t, 3)
        with self.cached_session(use_gpu=False, force_gpu=False) as sess:
            # test for padding
            res = sess.run(after_2_t, feed_dict={origin_2_t: [[1, 2], [1, 2]]})
            self.assertAllEqual(res, [[1, 2, 0], [1, 2, 0]])

            # test for cut
            res = sess.run(
                after_2_t,
                feed_dict={origin_2_t: [[1, 2, 3, 4], [1, 2, 3, 4]]})
            self.assertAllEqual(res, [[1, 2, 3], [1, 2, 3]])
コード例 #2
0
ファイル: text_match_task.py プロジェクト: zhankm/delta
  def export_inputs(self):
    """Inputs for exported model."""
    vocab_dict = load_vocab_dict(self.text_vocab_file_path)
    vocab_size = len(vocab_dict)
    self.config['data']['vocab_size'] = vocab_size

    input_sent_left = tf.placeholder(
        shape=(None,), dtype=tf.string, name="input_sent_left")
    input_sent_right = tf.placeholder(
        shape=(None,), dtype=tf.string, name="input_sent_right")
    input_pipeline_func = self.get_input_pipeline(for_export=True)

    token_ids_left = input_pipeline_func(input_sent_left)
    token_ids_right = input_pipeline_func(input_sent_right)
    token_ids_len_left = tf.map_fn(
        lambda x: compute_sen_lens(x, padding_token=0), token_ids_left)
    token_ids_len_right = tf.map_fn(
        lambda x: compute_sen_lens(x, padding_token=0), token_ids_right)

    export_data = {
        "export_inputs": {
            "input_sent_left": input_sent_left,
            "input_sent_right": input_sent_right,
        },
        "model_inputs": {
            "input_x_left": token_ids_left,
            "input_x_right": token_ids_right,
            "input_x_left_len": token_ids_len_left,
            "input_x_right_len": token_ids_len_right,
            "input_x_len": [token_ids_len_left, token_ids_len_right]
        }
    }
    return export_data
コード例 #3
0
def transfer_bert_model(bert_model_dir, output_bert_model):
  graph = tf.Graph()
  max_seq_len = 512
  num_labels = 2
  use_one_hot_embeddings = False
  with graph.as_default():
    with tf.Session() as sess:
      input_ids = tf.placeholder(tf.int32, (None, None), 'input_ids')
      input_mask = tf.placeholder(tf.int32, (None, None), 'input_mask')
      segment_ids = tf.placeholder(tf.int32, (None, None), 'segment_ids')

      bert_config = modeling.BertConfig.from_json_file(os.path.join(bert_model_dir, 'bert_config.json'))
      model = modeling.BertModel(
        config=bert_config,
        is_training=False,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings)
      all_encoder_layers = model.get_all_encoder_layers()
      input_x_bert_cls = model.get_pooled_output()
      for idx, layer in enumerate(all_encoder_layers):
        layer = tf.identity(layer, "encoder_layers_" + str(idx))
        print("layer:", layer)
      input_x_bert_cls = tf.identity(input_x_bert_cls, "input_x_bert_cls")
      print("input_x_bert_cls", input_x_bert_cls)
      saver = tf.train.Saver()

    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
      saver.restore(sess, bert_model_dir + "/bert_model.ckpt")
      saver.save(sess, output_bert_model)
コード例 #4
0
def _freq_feat_graph(feat_name, **kwargs):
  winlen = kwargs.get('winlen')
  winstep = kwargs.get('winstep')
  feature_size = kwargs.get('feature_size')
  sr = kwargs.get('sr')  #pylint: disable=invalid-name
  nfft = kwargs.get('nfft')
  del nfft

  assert feat_name in ('fbank', 'spec')

  params = speech_ops.speech_params(
      sr=sr,
      bins=feature_size,
      add_delta_deltas=False,
      audio_frame_length=winlen,
      audio_frame_step=winstep)

  graph = None
  if feat_name == 'fbank':
    # get session
    if feat_name not in _global_sess:
      graph = tf.Graph()
      #pylint: disable=not-context-manager
      with graph.as_default():
        # fbank
        filepath = tf.placeholder(dtype=tf.string, shape=[], name='wavpath')
        waveforms, sample_rate = speech_ops.read_wav(filepath, params)
        del sample_rate
        fbank = speech_ops.extract_feature(waveforms, params)
        # shape must be [T, D, C]
        feat = tf.identity(fbank, name=feat_name)
  elif feat_name == 'spec':
    # magnitude spec
    if feat_name not in _global_sess:
      graph = tf.Graph()
      #pylint: disable=not-context-manager
      with graph.as_default():
        filepath = tf.placeholder(dtype=tf.string, shape=[], name='wavpath')
        waveforms, sample_rate = speech_ops.read_wav(filepath, params)

        spec = py_x_ops.spectrum(
            waveforms[:, 0],
            tf.cast(sample_rate, tf.dtypes.float32),
            output_type=1)  #output_type: 1, power spec; 2 log power spec
        spec = tf.sqrt(spec)
        # shape must be [T, D, C]
        spec = tf.expand_dims(spec, -1)
        feat = tf.identity(spec, name=feat_name)
  else:
    raise ValueError(f"Not support freq feat: {feat_name}.")

  return graph, (_get_out_tensor_name('wavpath',
                                      0), _get_out_tensor_name(feat_name, 0))
コード例 #5
0
ファイル: text_seq2seq_task.py プロジェクト: youisbaby/delta
    def export_inputs(self):
        """Inputs for exported model."""
        vocab_dict = load_vocab_dict(self.text_vocab_file_path)
        vocab_size = len(vocab_dict)
        label_vocab_dict = load_vocab_dict(self.label_vocab_file_paths[0])
        label_vocab_size = len(label_vocab_dict)
        self.config['data']['vocab_size'] = vocab_size
        self.config['data']['label_vocab_size'] = label_vocab_size

        input_sentence = tf.placeholder(shape=(None, ),
                                        dtype=tf.string,
                                        name="input_sentence")

        input_pipeline_func = self.get_input_pipeline(for_export=True)

        token_ids = input_pipeline_func(input_sentence)
        token_ids_len = tf.map_fn(
            lambda x: compute_sen_lens(x, padding_token=0), token_ids)

        export_data = {
            "export_inputs": {
                "input_sentence": input_sentence
            },
            "model_inputs": {
                "input_enc_x": token_ids,
                "input_x_len": token_ids_len
            }
        }

        return export_data
コード例 #6
0
 def test_char_cut_tf_str(self):
     t_sen_in = tf.placeholder(dtype=tf.string, shape=())
     t_sen_out = char_cut_tf(t_sen_in)
     with self.cached_session(use_gpu=False, force_gpu=False) as sess:
         sen_out = sess.run(t_sen_out, {t_sen_in: "我爱北京天安门"})
         logging.info(sen_out.decode("utf-8"))
         self.assertEqual("我 爱 北 京 天 安 门", sen_out.decode("utf-8"))
コード例 #7
0
    def test_jieba_cut_op_no_file(self):
        ''' test jieba '''
        graph = tf.Graph()
        with graph.as_default():
            sentence_in = tf.placeholder(dtype=tf.string,
                                         shape=[None],
                                         name="sentence_in")

            sentence_out = self.build_op_no_file(sentence_in)
            shape_op = tf.shape(sentence_out)

            with self.cached_session(use_gpu=False, force_gpu=False) as sess:
                # self.assertShapeEqual(tf.shape(sentence_in), tf.shape(sentence_out))
                sentence_out_res = test_one(sess, sentence_out,
                                            {sentence_in: ["我爱北京天安门"]})
                self.assertEqual("我 爱 北京 天安门",
                                 sentence_out_res[0].decode("utf-8"))
                sentence_out_res = test_one(sess, sentence_out,
                                            {sentence_in: ["吉林省长春药店"]})
                self.assertEqual("吉林省 长春 药店",
                                 sentence_out_res[0].decode("utf-8"))
                sentence_out_res, shape_res = test_one(
                    sess, [sentence_out, shape_op],
                    {sentence_in: ["吉林省长春药店", "南京市长江大桥"]})
                self.assertEqual(
                    "吉林省 长春 药店\n南京市 长江大桥", "\n".join([
                        one_sen.decode("utf-8") for one_sen in sentence_out_res
                    ]))
                logging.info(f"shape: {shape_res}")
                self.assertAllEqual(shape_res, [2])
コード例 #8
0
 def test_char_cut_tf_list(self):
     t_sen_in = tf.placeholder(dtype=tf.string, shape=(None, ))
     t_sen_out = char_cut_tf(t_sen_in)
     with self.cached_session(use_gpu=False, force_gpu=False) as sess:
         sen_out = sess.run(t_sen_out, {t_sen_in: ["我爱北京天安门", "天安门前太阳升啊"]})
         logging.info([one.decode("utf-8") for one in sen_out])
         self.assertAllEqual(["我 爱 北 京 天 安 门", "天 安 门 前 太 阳 升 啊"],
                             [one.decode("utf-8") for one in sen_out])
コード例 #9
0
    def create_serving_input_receiver_fn(self):
        ''' infer input pipeline '''
        # with batch_size
        taskconf = self.config['data']['task']
        shape = [None] + taskconf['audio']['feature_shape']
        logging.debug('serving input shape:{}'.format(shape))

        #pylint: disable=no-member
        return tf.estimator.export.build_raw_serving_input_receiver_fn(
            features={
                'inputs':
                tf.placeholder(name="inputs", shape=shape, dtype=tf.float32),
                'texts':
                tf.placeholder(name="texts",
                               shape=(None, taskconf['text']['max_text_len']),
                               dtype=tf.int32)
            },
            default_batch_size=None,
        )
コード例 #10
0
    def export_inputs(self):
        """Inputs for exported model."""
        vocab_dict = load_vocab_dict(self.text_vocab_file_path)
        vocab_size = len(vocab_dict)
        if self.use_true_length and self.split_token != "":
            if self.split_token not in vocab_dict:
                raise ValueError(
                    "The Model uses split token: {}, not in corpus.".format(
                        self.split_token))
            self.config['data']['split_token'] = int(
                vocab_dict[self.split_token])
        self.config['data']['vocab_size'] = vocab_size

        input_sentence = tf.placeholder(shape=(None, ),
                                        dtype=tf.string,
                                        name="input_sentence")

        input_pipeline_func = self.get_input_pipeline(for_export=True)

        token_ids = input_pipeline_func(input_sentence)
        token_ids_len = tf.map_fn(
            lambda x: compute_sen_lens(x, padding_token=0), token_ids)

        export_data = {
            "export_inputs": {
                "input_sentence": input_sentence
            },
            "model_inputs": {
                "input_x": token_ids,
                "input_x_len": token_ids_len
            }
        }

        if self.use_dense:
            input_dense = tf.placeholder(shape=(None, ),
                                         dtype=tf.float32,
                                         name="input_dense")
            export_data["export_inputs"]["input_dense"] = input_dense

        return export_data
コード例 #11
0
  def test_ngram_op_2_order(self):
    ''' test ngram 2-order op'''
    ground_truth_2 = [0, 0, 0, 0, 0, 0, 0]

    word_ngram = 2
    t_input = tf.placeholder(shape=(4,), dtype=tf.int32)
    t_ngram = py_x_ops.ngram(
        t_input, word_ngrams=word_ngram, vocab_size=5000, bucket_size=100000)
    logging.info("t_ngram: {}".format(t_ngram))
    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
      ngram_result = sess.run(t_ngram, feed_dict={t_input: self.testcase[0]})
      self.assertAllEqual(ngram_result, ground_truth_2)
コード例 #12
0
    def create_serving_input_receiver_fn(self):
        # with batch_size
        taskconf = self.config['data']['task']
        shape = [None] + taskconf['audio']['feature_shape']
        logging.debug('serving input shape:{}'.format(shape))

        return tf.estimator.export.build_raw_serving_input_receiver_fn(
            features={
                'inputs':
                tf.placeholder(name="inputs", shape=shape, dtype=tf.float32),
            },
            default_batch_size=None,
        )
コード例 #13
0
ファイル: kws_solver.py プロジェクト: lizhanyang505/delta-1
  def create_serving_input_receiver_fn(self):
    # shape must be with batch_size
    taskconf = self.config['data']['task']
    shape = taskconf['audio']['feature_shape']
    shape.insert(0, None)

    return tf.estimator.export.build_raw_serving_input_receiver_fn(  #pylint:disable=no-member
        features={
            'inputs':
                tf.placeholder(name="inputs", shape=shape, dtype=tf.float32),
        },
        default_batch_size=None,
    )
コード例 #14
0
 def test_clean_english_str_tf(self):
   t_sentence_in = tf.placeholder(dtype=tf.string)
   t_sentence_out = clean_english_str_tf(t_sentence_in)
   with self.cached_session(use_gpu=False, force_gpu=False) as sess:
     sentence_out = sess.run(t_sentence_out,
                             {t_sentence_in: "I'd like to have an APPLE! "})
     logging.info(sentence_out)
     self.assertEqual("i 'd like to have an apple !",
                      sentence_out.decode("utf-8"))
     sentence_out = sess.run(t_sentence_out,
                             {t_sentence_in: ["I'd like to have an APPLE! "]})
     logging.info(sentence_out)
     self.assertEqual("i 'd like to have an apple !",
                      sentence_out[0].decode("utf-8"))
コード例 #15
0
    def test_compute_doc_lens(self):
        ''' compute document length'''
        docs = tf.placeholder(dtype=tf.int32)
        lens = compute_doc_lens(docs)

        with self.cached_session(use_gpu=False, force_gpu=False) as sess:
            # test for 1d
            res = sess.run(lens, feed_dict={docs: [1, 2, 0, 0]})
            self.assertEqual(res, 2)

            # test for 2d
            res = sess.run(lens,
                           feed_dict={docs: [[1, 2, 0, 0], [1, 2, 3, 4]]})
            self.assertAllEqual(res, [2, 4])
コード例 #16
0
def add_delta_delta(feat, feat_size, order=2):
  ''' add delta detla '''
  feat_name = 'delta_delta'
  graph = None
  # get session
  if feat_name not in _global_sess:
    graph = tf.Graph()
    #pylint: disable=not-context-manager
    with graph.as_default():
      fbank = tf.placeholder(
          dtype=tf.float32, shape=[None, feat_size, 1], name='fbank')
      feat_with_delta_delta = speech_ops.delta_delta(fbank, order=order)
      feat_with_delta_delta = tf.identity(feat_with_delta_delta, name=feat_name)

  sess = _get_session(feat_name, graph)
  feat = sess.run(
      _get_out_tensor_name(feat_name, 0), feed_dict={'fbank:0': feat})
  return feat
コード例 #17
0
  def test_batch_ngram_op_2_order(self):
    ''' tset batch 2-order ngram '''
    ground_truth_2 = [[0, 0, 0, 0, 0, 0, 0], [223, 0, 0, 0, 0, 0, 0],
                      [0, 8, 5008, 0, 0, 0, 0], [4, 8, 102492, 0, 0, 0, 0],
                      [0, 0, 10, 5000, 5010, 0, 0],
                      [2, 5, 3, 103747, 51858, 0, 0],
                      [7, 2, 1, 24, 50599, 103743, 54395]]

    word_ngram = 2
    t_input = tf.placeholder(shape=(7, 4), dtype=tf.int32)
    t_ngram = py_x_ops.ngram(
        t_input, word_ngrams=word_ngram, vocab_size=5000, bucket_size=100000)
    logging.info("batch t_ngram: {}".format(t_ngram))
    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
      ngram_result = sess.run(t_ngram, feed_dict={t_input: self.testcase})
      ngram_result = [list(res) for res in ngram_result]
      self.assertAllEqual(ngram_result, ground_truth_2)
コード例 #18
0
    def test_compute_sen_lens(self):
        sentences = tf.placeholder(dtype=tf.int32)
        lens = compute_sen_lens(sentences)

        with self.cached_session(use_gpu=False, force_gpu=False) as sess:
            # test for 1d
            res = sess.run(lens, feed_dict={sentences: [1, 2, 0, 0]})
            self.assertEqual(res, 2)

            # test for 2d
            res = sess.run(lens,
                           feed_dict={sentences: [[1, 2, 0, 0], [1, 2, 3, 4]]})
            self.assertAllEqual(res, [2, 4])

            # test for 3d
            res = sess.run(lens,
                           feed_dict={
                               sentences: [[[1, 2, 0, 0]], [[1, 2, 3, 4]],
                                           [[1, 0, 0, 0]]]
                           })
            self.assertAllEqual(res, [[2], [4], [1]])
コード例 #19
0
    def test_split_one_doc_to_true_len_sens(self):
        doc = tf.placeholder(dtype=tf.int32, shape=[None])
        split_token = 1
        padding_token = 0
        max_doc_len = 4
        max_sen_len = 5
        lens = split_one_doc_to_true_len_sens(doc, split_token, padding_token,
                                              max_doc_len, max_sen_len)

        with self.cached_session(use_gpu=False, force_gpu=False) as sess:
            res = sess.run(lens,
                           feed_dict={doc: [2, 3, 1, 2, 1, 2, 3, 4, 5, 6, 1]})
            self.assertAllEqual(res, [[2, 3, 0, 0, 0], [2, 0, 0, 0, 0],
                                      [2, 3, 4, 5, 6], [0, 0, 0, 0, 0]])

            all_empty = [[0 for _ in range(max_sen_len)]
                         for _ in range(max_doc_len)]
            res = sess.run(lens, feed_dict={doc: []})
            self.assertAllEqual(res, all_empty)

            res = sess.run(lens, feed_dict={doc: [1, 1, 1, 1, 1]})
            self.assertAllEqual(res, all_empty)
コード例 #20
0
def load_wav(wavpath, sr=8000):
    '''
  audio:
    np.float32, shape [None], sample in [-1, 1], using librosa.load
    np.int16, shape [None], sample in [-32768, 32767], using scipy.io.wavfile
    np.float32, shape[None, audio_channel], sample int [-1, 1], using tf.DecodeWav

  return
    sr: sample rate
    audio: [-1, 1], same to tf.DecodeWav
  '''
    #from scipy.io import wavfile
    #sample_rate, audio = wavfile.read(wavpath)

    #samples, sample_rate = librosa.load(wavpath, sr=sr)

    feat_name = 'load_wav'
    graph = None
    # get session
    if feat_name not in _global_sess:
        graph = tf.Graph()
        with graph.as_default():
            params = speech_ops.speech_params(sr=sr, audio_desired_samples=-1)
            t_wavpath = tf.placeholder(dtype=tf.string, name="wavpath")
            t_audio, t_sample_rate = speech_ops.read_wav(t_wavpath, params)
            t_audio = tf.identity(t_audio, name="audio")
            t_sample_rate = tf.identity(t_sample_rate, name="sample_rate")

    sess = _get_session(feat_name, graph)
    audio, sample_rate = sess.run([
        _get_out_tensor_name('audio', 0),
        _get_out_tensor_name('sample_rate', 0)
    ],
                                  feed_dict={"wavpath:0": wavpath})
    audio = audio[:, 0]

    assert sample_rate == sr, 'sampling rate must be {}Hz, get {}Hz'.format(
        sr, sample_rate)
    return sample_rate, audio
コード例 #21
0
ファイル: avg_checkpoints.py プロジェクト: ai-driven/delta
def main(_):
    if FLAGS.checkpoints:
        # Get the checkpoints list from flags and run some basic checks.
        checkpoints = [c.strip() for c in FLAGS.checkpoints.split(",")]
        checkpoints = [c for c in checkpoints if c]
        if not checkpoints:
            raise ValueError("No checkpoints provided for averaging.")
        if FLAGS.prefix:
            checkpoints = [FLAGS.prefix + c for c in checkpoints]
    else:
        assert FLAGS.num_last_checkpoints >= 1, "Must average at least one model"
        assert FLAGS.prefix, ("Prefix must be provided when averaging last"
                              " N checkpoints")
        checkpoint_state = tf.train.get_checkpoint_state(
            os.path.dirname(FLAGS.prefix))
        # Checkpoints are ordered from oldest to newest.
        checkpoints = checkpoint_state.all_model_checkpoint_paths[
            -FLAGS.num_last_checkpoints:]

    checkpoints = [c for c in checkpoints if checkpoint_exists(c)]
    if not checkpoints:
        if FLAGS.checkpoints:
            raise ValueError("None of the provided checkpoints exist. %s" %
                             FLAGS.checkpoints)
        else:
            raise ValueError("Could not find checkpoints at %s" %
                             os.path.dirname(FLAGS.prefix))

    # Read variables from all checkpoints and average them.
    logging.info("Reading variables and averaging checkpoints:")
    for c in checkpoints:
        logging.info("%s ", c)
    var_list = tf.train.list_variables(checkpoints[0])
    var_values, var_dtypes = {}, {}
    for (name, shape) in var_list:
        if not name.startswith("global_step"):
            var_values[name] = np.zeros(shape)
    for checkpoint in checkpoints:
        reader = tf.train.load_checkpoint(checkpoint)
        for name in var_values:
            tensor = reader.get_tensor(name)
            var_dtypes[name] = tensor.dtype
            var_values[name] += tensor
        logging.info("Read from checkpoint %s", checkpoint)
    for name in var_values:  # Average.
        var_values[name] /= len(checkpoints)

    with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
        tf_vars = [
            tf.get_variable(v, shape=var_values[v].shape, dtype=var_dtypes[v])
            for v in var_values
        ]
    placeholders = [tf.placeholder(v.dtype, shape=v.shape) for v in tf_vars]
    assign_ops = [tf.assign(v, p) for (v, p) in zip(tf_vars, placeholders)]
    global_step = tf.Variable(0,
                              name="global_step",
                              trainable=False,
                              dtype=tf.int64)
    saver = tf.train.Saver(tf.all_variables())

    # Build a model consisting only of variables, set them to the average values.
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for p, assign_op, (name, value) in zip(placeholders, assign_ops,
                                               six.iteritems(var_values)):
            sess.run(assign_op, {p: value})
        # Use the built saver to save the averaged checkpoint.
        saver.save(sess, FLAGS.output_path, global_step=global_step)

    logging.info("Averaged checkpoints saved in %s", FLAGS.output_path)