def testMultipleQ2(self): """Test function for DS simulation with nq>1 2/2""" # filtering and simulation filtM1 = [0., 0., 0., 2., -1.] filtM2 = [1., -2., 1.] ntf_eq = zpk_multiply(self.ntfs[1, 1], self.ntfs[1, 1]) M = self.nlev[0] - 1 osr = 64 f0 = 0. f1, f2 = ds.ds_f1f2(OSR=64, f0=0., complex_flag=False) delta = 2 Amp = ds.undbv(-3) # Test tone amplitude, relative to full-scale. f = 0.3 # will be adjusted to a bin N = 2**12 f1_bin = int(np.round(f1 * N)) f2_bin = int(np.round(f2 * N)) fin = np.round(((1 - f) / 2 * f1 + (f + 1) / 2 * f2) * N) # input sine t = np.arange(0, N).reshape((1, -1)) u = Amp * M * np.cos((2 * np.pi / N) * fin * t) vx, _, xmax, y = ds.simulateDSM(u, self.ABCD, nlev=self.nlev) # separate output #1 and output #2 v1 = vx[0, :] v2 = vx[1, :] # filter and combine vf = lfilter(filtM1, [1.], v1) + lfilter(filtM2, [1.], v2) # compute the spectra window = ds.ds_hann(N) NBW = 1.5 / N spec0 = np.fft.fft(vf * window) / (M * N / 2) / ds.undbv(-6) spec1 = np.fft.fft(v1 * window) / (M * N / 2) / ds.undbv(-6) spec2 = np.fft.fft(v1 * window) / (M * N / 2) / ds.undbv(-6) freq = np.linspace(0, 0.5, N // 2 + 1) # smooth, calculate the theorethical response and the SNR for VF spec0_smoothed = ds.circ_smooth(np.abs(spec0)**2., 16) Snn0 = np.abs(ds.evalTF(ntf_eq, np.exp( 2j * np.pi * freq)))**2 * 2 / 12 * (delta / M)**2 snr0 = ds.calculateSNR(spec0[f1_bin:f2_bin + 1], fin - f1_bin) # smooth, calculate the theorethical response and the SNR for V1 spec1_smoothed = ds.circ_smooth(np.abs(spec1)**2., 16) Snn1 = np.abs(ds.evalTF(self.ntfs[0, 0], np.exp( 2j * np.pi * freq)))**2 * 2 / 12 * (delta / M)**2 snr1 = ds.calculateSNR(spec1[f1_bin:f2_bin + 1], fin - f1_bin) assert snr0 > 40 assert snr1 > 40 assert snr0 - snr1 > 40
def testMultipleQ2(self): """Test function for DS simulation with nq>1 2/2""" # filtering and simulation filtM1 = [0., 0., 0., 2., -1.] filtM2 = [1., -2., 1.] ntf_eq = zpk_multiply(self.ntfs[1, 1], self.ntfs[1, 1]) M = self.nlev[0] - 1 osr = 64 f0 = 0. f1, f2 = ds.ds_f1f2(OSR=64, f0=0., complex_flag=False) delta = 2 Amp = ds.undbv(-3) # Test tone amplitude, relative to full-scale. f = 0.3 # will be adjusted to a bin N = 2**12 f1_bin = np.round(f1*N) f2_bin = np.round(f2*N) fin = np.round(((1 - f)/2*f1 + (f + 1)/2*f2) * N) # input sine t = np.arange(0, N).reshape((1, -1)) u = Amp*M*np.cos((2*np.pi/N)*fin*t) vx, _, xmax, y = ds.simulateDSM(u, self.ABCD, nlev=self.nlev) # separate output #1 and output #2 v1 = vx[0, :] v2 = vx[1, :] # filter and combine vf = lfilter(filtM1, [1.], v1) + lfilter(filtM2, [1.], v2) # compute the spectra window = ds.ds_hann(N) NBW = 1.5/N spec0 = np.fft.fft(vf*window)/(M*N/2)/ds.undbv(-6) spec1 = np.fft.fft(v1*window)/(M*N/2)/ds.undbv(-6) spec2 = np.fft.fft(v1*window)/(M*N/2)/ds.undbv(-6) freq = np.linspace(0, 0.5, N/2 + 1) # smooth, calculate the theorethical response and the SNR for VF spec0_smoothed = ds.circ_smooth(np.abs(spec0)**2., 16) Snn0 = np.abs(ds.evalTF(ntf_eq, np.exp(2j*np.pi*freq)))**2 * 2/12*(delta/M)**2 snr0 = ds.calculateSNR(spec0[f1_bin:f2_bin + 1], fin - f1_bin) # smooth, calculate the theorethical response and the SNR for V1 spec1_smoothed = ds.circ_smooth(np.abs(spec1)**2., 16) Snn1 = np.abs(ds.evalTF(self.ntfs[0, 0], np.exp(2j*np.pi*freq)))**2 * 2/12*(delta/M)**2 snr1 = ds.calculateSNR(spec1[f1_bin:f2_bin + 1], fin - f1_bin) assert snr0 > 40 assert snr1 > 40 assert snr0-snr1 > 40
def test_plotSpectrum(self): """Test function for plotSpectrum()""" f0 = 0 osr = 32 quadrature = False Hinf = 1.5 order = 3 ntf = ds.synthesizeNTF(order, osr, 0, Hinf, f0) f1, f2 = ds.ds_f1f2(osr, f0, quadrature) delta = 2 Amp = ds.undbv(-3) f = 0.3 N = 2**12 f1_bin = np.round(f1*N) f2_bin = np.round(f2*N) fin = np.round(((1 - f)/2*f1 + (f + 1)/2*f2) * N) t = np.arange(0, N) u = Amp*np.cos((2*np.pi/N)*fin*t) v, xn, xmax, y = ds.simulateDSM(u, ntf, 2) window = ds.ds_hann(N) NBW = 1.5/N spec0 = fft(v * window)/(N/4) freq = np.linspace(0, 0.5, N/2 + 1) # plotting plt.subplot(211) plt.plot(freq, ds.dbv(spec0[:N/2 + 1]), 'c', linewidth=1, label='$S$') plt.hold(True) spec_smoothed = ds.circ_smooth(np.abs(spec0)**2., 16) plt.plot(freq, ds.dbp(spec_smoothed[:N/2 + 1]), 'b--', linewidth=2, label='$\\mathrm{circ\\_smooth}(S)$') ds.plotSpectrum(spec0, fin, 'r', linewidth=2, label='$\\mathrm{plotSpectrum}(S)$') Snn = np.abs(ds.evalTF(ntf, np.exp(2j*np.pi*freq)))**2 * 2/12*(delta)**2 plt.plot(freq, ds.dbp(Snn*NBW), 'm', linewidth=1.5, label='$\mathrm{from\\ NTF}$') plt.text(0.5, -3, 'NBW = %.1e ' % NBW, horizontalalignment='right', verticalalignment='top') ds.figureMagic((0, 0.5), None, None, (-140, 0), 20, None) plt.ylabel('Spectrum [dB]') ax = plt.gca() ax.set_title('Smoothing and plotting for LOG and LIN axes') plt.legend(loc=4) plt.subplot(212) plt.plot(freq, ds.dbv(spec0[:N/2 + 1]), 'c', linewidth=1, label='$S$') plt.hold(True) ds.plotSpectrum(spec0, fin, '--r', linewidth=2, label='$\\mathrm{plotSpectrum}(S)$') plt.plot(freq, ds.dbp(spec_smoothed[:N/2 + 1]), 'b', linewidth=2, label='$\\mathrm{circ\\_smooth}(S)$') plt.plot(freq, ds.dbp(Snn*NBW), 'm', linewidth=1.5, label='$\mathrm{from\\ NTF}$') plt.text(0.5, -3, 'NBW = %.1e ' % NBW, horizontalalignment='right', verticalalignment='top') ds.figureMagic((0, 0.5), None, None, (-140, 0), 20, None) ax = plt.gca() ax.set_xscale('linear') plt.ylabel('Spectrum [dB]') plt.xlabel('Normalized frequency ($f_s \\rightarrow 1$)') plt.legend(loc=4)
def test_plotSpectrum(self): """Test function for plotSpectrum()""" f0 = 0 osr = 32 quadrature = False Hinf = 1.5 order = 3 ntf = ds.synthesizeNTF(order, osr, 0, Hinf, f0) f1, f2 = ds.ds_f1f2(osr, f0, quadrature) delta = 2 Amp = ds.undbv(-3) f = 0.3 N = 2**12 f1_bin = np.round(f1 * N) f2_bin = np.round(f2 * N) fin = np.round(((1 - f) / 2 * f1 + (f + 1) / 2 * f2) * N) t = np.arange(0, N) u = Amp * np.cos((2 * np.pi / N) * fin * t) v, xn, xmax, y = ds.simulateDSM(u, ntf, 2) window = ds.ds_hann(N) NBW = 1.5 / N spec0 = fft(v * window) / (N / 4) freq = np.linspace(0, 0.5, N // 2 + 1) # plotting plt.subplot(211) plt.plot(freq, ds.dbv(spec0[:N // 2 + 1]), 'c', linewidth=1, label='$S$') #plt.hold(True) spec_smoothed = ds.circ_smooth(np.abs(spec0)**2., 16) plt.plot(freq, ds.dbp(spec_smoothed[:N // 2 + 1]), 'b--', linewidth=2, label='$\\mathrm{circ\\_smooth}(S)$') ds.plotSpectrum(spec0, fin, 'r', linewidth=2, label='$\\mathrm{plotSpectrum}(S)$') Snn = np.abs(ds.evalTF(ntf, np.exp( 2j * np.pi * freq)))**2 * 2 / 12 * (delta)**2 plt.plot(freq, ds.dbp(Snn * NBW), 'm', linewidth=1.5, label='$\\mathrm{from\\ NTF}$') plt.text(0.5, -3, 'NBW = %.1e ' % NBW, horizontalalignment='right', verticalalignment='top') ds.figureMagic((0, 0.5), None, None, (-140, 0), 20, None) plt.ylabel('Spectrum [dB]') ax = plt.gca() ax.set_title('Smoothing and plotting for LOG and LIN axes') plt.legend(loc=4) plt.subplot(212) plt.plot(freq, ds.dbv(spec0[:N // 2 + 1]), 'c', linewidth=1, label='$S$') #plt.hold(True) ds.plotSpectrum(spec0, fin, '--r', linewidth=2, label='$\\mathrm{plotSpectrum}(S)$') plt.plot(freq, ds.dbp(spec_smoothed[:N // 2 + 1]), 'b', linewidth=2, label='$\\mathrm{circ\\_smooth}(S)$') plt.plot(freq, ds.dbp(Snn * NBW), 'm', linewidth=1.5, label='$\\mathrm{from\\ NTF}$') plt.text(0.5, -3, 'NBW = %.1e ' % NBW, horizontalalignment='right', verticalalignment='top') ds.figureMagic((0, 0.5), None, None, (-140, 0), 20, None) ax = plt.gca() ax.set_xscale('linear') plt.ylabel('Spectrum [dB]') plt.xlabel('Normalized frequency ($f_s \\rightarrow 1$)') plt.legend(loc=4)
def test_circ_smooth(self): A = np.arange(1, 101) b = ds.circ_smooth(A, 16) self.assertTrue(np.allclose(self.bt, b, atol=1e-8, rtol=1e-5))