def serve(): server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) all_in_one_pb2_grpc.add_AllInOneServicer_to_server(Greeter(), server) server.add_insecure_port('[::]:50051') server.start() model = load_model( "/home/samuel/projects/All-In-One/allinonemodels/allinone.json", "/home/samuel/projects/All-In-One/allinonemodels/freeze2.h5", ["age_estimation", "smile", "gender_probablity"]) model.summary() detector = dlib.get_frontal_face_detector() #image demo images_demo(model, "/home/samuel/projects/All-In-One/grpc/test/test_images/", detector) #video demo #webcam_demo(model,detector) video_demo( model, "/home/samuel/projects/All-In-One/grpc/test/test_videos/video_demo3.mp4", detector) try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0)
def main(): print("loading model") model = load_model( "/home/samuel/projects/All-In-One/allinonemodels/allinone.json", "/home/samuel/projects/All-In-One/allinonemodels/freeze2.h5", ["age_estimation", "smile", "gender_probablity"]) model.summary() print("loaded model") detector = dlib.get_frontal_face_detector() images_demo(model, "/home/samuel/projects/All-In-One/Images/", detector)
def main(): global args args = parser.parse_args() if not os.path.isdir(args.out): os.mkdir(args.out) topics = [] velo_topics = [] odom_topics = [] if args.odom_topics != None: for t in args.odom_topics.split(","): odom_topics.append(t) topics.append(t) cam_topics = [] if args.cam_topics != None: for t in args.cam_topics.split(","): cam_topics.append(t) topics.append(t) if args.velo_topics != None: for t in args.velo_topics.split(","): velo_topics.append(t) topics.append(t) import json print(json.dumps(cfg, sort_keys=True, indent=2)) model = load_model() offset = 0 for b in args.bags.split(","): print("start bag", b) bag_name = b.split('/')[-1] car_name = bag_name.split('_')[1] date = int(bag_name.split('_')[0].split('T')[0]) sys.stdout.flush() bag = rosbag.Bag(b) msg_it = iter( buffered_message_generator(bag, args.tolerance, topics, odom_topics)) offset = msg_loop(args.out, args.rate, args.frame_limit, topics, velo_topics, cam_topics, odom_topics, msg_it, offset, model, car_name, date)
from flask import Flask, flash, render_template, redirect, url_for, request import demo model = demo.load_model() app = Flask(__name__) @app.route('/') def hello_world(): return redirect('/classify') @app.route('/classify', methods=['GET', 'POST']) def classify_system(): error = None if request.method == 'POST': comment = request.form['comment'] if comment == '': error = 'Bạn chưa nhập dữ liệu. Hãy nhập lại' return render_template('UI_demo.html', error=error) else: predict = demo.classify_one_comment(model, comment)[-1] print(predict) if predict == 0: emotional = "Tích cực" else: emotional = "Tiêu cực" return render_template('UI_demo.html', error=error, comment=comment,
from demo import load_model, detect import glob import time MODEL = 'faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017' sess = load_model(MODEL) THRESHOLD = 0.7 TEST_IMAGE_PATHS = glob.glob("/root/data/demo/van_big/*.jpg") for img_path in TEST_IMAGE_PATHS: tic = time.time() outputs = detect(sess, img_path, thresh=THRESHOLD) print("Detection Time {0:.2f} sec".format(time.time() - tic)) for output in outputs: score = output['score'] class_name = output['class'] x = output['x'] y = output['y'] width = output['width'] height = output['height'] print("'{}' detected with confidence {} in [{}, {}, {}, {}]\n".format(class_name.upper(),\ score, x, y, width,\ height))
#video demo #webcam_demo(model,detector) video_demo( model, "/home/samuel/projects/All-In-One/grpc/test/test_videos/video_demo3.mp4", detector) try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0) if __name__ == '__main__': model = load_model( "/home/samuel/projects/All-In-One/allinonemodels/allinone.json", "/home/samuel/projects/All-In-One/allinonemodels/freeze2.h5", ["age_estimation", "smile", "gender_probablity"]) model.summary() detector = dlib.get_frontal_face_detector() #image demo images_demo(model, "/home/samuel/projects/All-In-One/grpc/test/test_images/", detector) #video demo #webcam_demo(model,detector) video_demo( model, "/home/samuel/projects/All-In-One/grpc/test/test_videos/video_demo3.mp4", detector) serve()
def main(): parser = get_parser() args = parser.parse_args() device = torch.device(args.device) smpl = SMPL_Layer().to(device) train_parser = TrainingOptionParser() model_args = train_parser.load(pjoin(args.model_path, 'args.txt')) test_pose, test_loc = load_test_anim(args.pose_file, device) test_shape = torch.tensor(np.load('./eval_constant/test_shape.npy'), device=device) topo_loader = TopologyLoader(device=device, debug=False) smpl_topo_begin, len_topo_smpl = topo_loader.load_smpl_group( './dataset/Meshes/SMPL/topology/', is_train=False) env_model, res_model = load_model(device, model_args, topo_loader, args.model_path, envelope_only=False) res_weight = [] res_skeleton = [] res_verts = [] res_verts_lbs = [] gt_skeleton = smpl.get_offset(test_shape) gt_verts = [] print('Evaluating model...') for i in tqdm(range(test_shape.shape[0])): pose_ph = torch.zeros((1, 72), device=device) t_pose = smpl.forward(pose_ph, test_shape[[i]])[0][0] # t_pose = t_pose[topo_loader.v_masks[i]] gt_vs = smpl.forward(test_pose, test_shape[[i]].expand(test_pose.shape[0], -1))[0] gt_vs = gt_vs[:, topo_loader.v_masks[i]] gt_verts.append(gt_vs) weight, skeleton, vs, vs_lbs, _, _ = run_single_mesh(t_pose, smpl_topo_begin + i, test_pose, env_model, res_model, requires_lbs=True) res_weight.append(weight) res_skeleton.append(skeleton) res_verts.append(vs) res_verts_lbs.append(vs_lbs) err_weight = [] err_avg_verts = [] err_max_verts = [] err_lbs_verts = [] err_j2j = [] err_j2b = [] err_b2b = [] print('Aggregating error...') for i in tqdm(range(test_shape.shape[0])): mask = topo_loader.v_masks[i] weight_gt = smpl.weights[mask] err_weight.append(chamfer_weight(res_weight[i], weight_gt)) err_vert = vert_distance(res_verts[i], gt_verts[i]) err_lbs = vert_distance(res_verts_lbs[i], gt_verts[i]) err_avg_verts.append(err_vert[0]) err_max_verts.append(err_vert[1]) err_lbs_verts.append(err_lbs[0]) err_j2j.append( chamfer_j2j(res_skeleton[i], gt_skeleton[i], parent_smpl)) err_j2b.append( chamfer_j2b(res_skeleton[i], gt_skeleton[i], parent_smpl)) err_b2b.append( chamfer_b2b(res_skeleton[i], gt_skeleton[i], parent_smpl)) err_weight = np.array(err_weight).mean() err_avg_verts = np.array(err_avg_verts).mean() err_max_verts = np.array(err_max_verts).mean() err_lbs_verts = np.array(err_lbs_verts).mean() err_j2j = np.array(err_j2j).mean() err_j2b = np.array(err_j2b).mean() err_b2b = np.array(err_b2b).mean() print('Skinning Weight L1 = %.7f' % err_weight) print('Vertex Mean Loss L2 = %.7f' % err_avg_verts) print('Vertex Max Loss L2 = %.7f' % err_max_verts) print('Envelope Mean Loss L2 = %.7f' % err_lbs_verts) print('CD-J2J = %.7f' % err_j2j) print('CD-J2B = %.7f' % err_j2b) print('CD-B2B = %.7f' % err_b2b)