def test_seeded_run_ar(self): random.seed(1) m = SARIMA(c=1, sigma=1, pcoeff=[1, -1, 0.5]) x = m.generate(10) expected = [ 2.28818475, 4.73763036, 3.51578142, 0.15769978, -1.08143967, 1.55008577, 2.68827216, 0.16063711, -0.55328019, 1.76359339 ] assert x == pytest.approx(expected, rel=1e-5)
def test_seeded_run_ma(self): random.seed(1) # see note on qcoeff signum on TestMA.test_seeded_run m = SARIMA(c=0, sigma=1, qcoeff=[-1, -2, -3]) x = m.generate(10) expected = [ 1.28818475, 2.73763036, 4.09215092, 6.06523763, 2.62429158, -2.39091857, -5.46874604, -5.67278323, -3.18772026, -5.60728182 ] assert x == pytest.approx(expected, rel=1e-5)
def test_seeded_random_walk_as_arima(self): random.seed(1) m = SARIMA(c=0, sigma=1, d=1) x = m.generate(10) expected = [ 1.2881847531554629, 2.737630361855234, 2.8039661707934957, 2.039422519821864, 0.9472493047177224, 0.9785838215494392, -0.04351934846143368, -1.4803487935639636, -1.2810368170802098, -1.147662212421605 ] assert x == pytest.approx(expected, rel=1e-5)
def test_full_arima(self): random.seed(1) # see note on qcoeff signum on TestMA.test_seeded_run m = SARIMA(pcoeff=[1, -1], d=2, qcoeff=[-1, -1, -1, -1, -1]) x = m.generate(10) expected = [ 1.2881847531554629, 6.602184621321622, 17.457781022136512, 31.868581360411298, 45.24023840821498, 54.99613204963708, 60.84370147353184, 62.18073093086161, 58.83054165128004, 52.11658886910866 ] assert x == pytest.approx(expected, rel=1e-5)
def test_seeded_run_ma_using_buffer(self): random.seed(1) # see note on qcoeff signum on TestMA.test_seeded_run m = SARIMA(c=0, sigma=1, qcoeff=[-1, -2, -3], e_buff=[10, 9, 8]) x = m.generate(10) expected = [ 57.28818475315546, 45.73763036185523, 28.09215092394896, 6.0652376348325605, 2.6242915779000637, -2.390918573400903, -5.468746036302335, -5.672783226762393, -3.1877202581453714, -5.60728181909532 ] assert x == pytest.approx(expected, rel=1e-5)
def test_seeded_run_arma_using_buffers(self): random.seed(1) # see note on qcoeff signum on TestMA.test_seeded_run m = SARIMA(c=1, sigma=1, pcoeff=[1, -1, 0.5], qcoeff=[-1, -2, 1], x_buff=[-4, -6, 8], e_buff=[2, 1, -1]) x = m.generate(10) expected = [ 13.288184753155463, 3.0258151150106967, -0.1702187141958067, 5.360557169581937, 4.870192584384071, -2.2317357514497194, -5.832221183458628, -1.469479506162701, 0.9338154760988293, -1.031684748519612 ] assert x == pytest.approx(expected, rel=1e-5)
def test_full_sarima(self): random.seed(1) # see note on qcoeff signum on TestMA.test_seeded_run m = SARIMA(pcoeff=[1, -1], d=2, qcoeff=[-1, -1, -1, -1, -1], m=3, Pcoeff=[1, -1], D=1, Qcoeff=[-1, -1, -1, -1, -1]) x = m.generate(10) expected = [ 1.2881847531554629, 6.602184621321623, 17.457781022136516, 35.73313561987769, 65.04679227217986, 107.36947511604666, 162.8903693205431, 230.91236926211474, 311.1078429108742, 401.71970861069417 ] assert x == pytest.approx(expected, rel=1e-5)
def test_full_arima_10_equivalent_to_5_and_5(self): random.seed(1) # see note on qcoeff signum on TestMA.test_seeded_run m1 = SARIMA(pcoeff=[1, -1], d=2, qcoeff=[-1, -1, -1, -1, -1]) x1 = m1.generate(10) random.seed(1) m2 = SARIMA(pcoeff=[1, -1], d=2, qcoeff=[-1, -1, -1, -1, -1]) x2 = m2.generate(5) + m2.generate(5) assert x1 == pytest.approx(x2, rel=1e-5)
def test_white_noise(self): m = SARIMA(c=0, sigma=1, pcoeff=[]) s = pd.Series(m.generate(1000)) assert s.std() == pytest.approx(1.0, abs=1e2) assert s.mean() == pytest.approx(0.0, abs=1e2)
def test_periodic(self): m = SARIMA(c=1, sigma=0, pcoeff=[1, -1]) x = m.generate(10) assert x == [1.0, 2.0, 2.0, 1.0, 0.0, 0.0, 1.0, 2.0, 2.0, 1.0]
def test_linear_using_buffer(self): m = SARIMA(c=1, sigma=0, pcoeff=[1], x_buff=[4]) x = m.generate(10) assert x == [float(x) for x in range(5, 15)]
def test_linear_multiple_calls(self): m = SARIMA(c=1, sigma=0, pcoeff=[1]) x = m.generate(10) assert x == [float(x) for x in range(1, 11)] x = m.generate(10) assert x == [float(x) for x in range(11, 21)]
def test_linear(self): m = SARIMA(c=1, sigma=0, pcoeff=[1]) x = m.generate(10) assert x == [float(x) for x in range(1, 11)]
def test_constant_generation(self): m = SARIMA(c=1, sigma=0) x = m.generate(10) assert x == [1] * 10
def test_default_creation(self): m = SARIMA() assert m