コード例 #1
0
def mass_photometry(fname, outfile):
    filenames = glob('/lustre/aoc/students/bmcclell/w51/' + fname)

    objs = []
    print('Loading files')
    pb = ProgressBar(len(filenames))
    for f in filenames:
        rs = dendrocat.RadioSource(fits.open(f))
        objs.append(rs)
        pb.update()

    #n = np.shape(objs[0].data)[0]
    #center = regions.PixCoord(n/2, n/2)
    #reg = regions.CirclePixelRegion(center, 3200)
    #mask = reg.to_mask()
    #img = mask.to_image((n, n)).astype(bool)
    #objs[0].data = np.where(img==True, objs[0].data, np.nan)

    # Debugging
    #plt.figure()
    #plt.imshow(objs[0].data)
    #plt.show()
    #objs[0].threshold = 4.5
    #objs[0].min_value = 1.1e-4
    #objs[0].min_delta = 1.2*objs[0].min_value
    #objs[0].to_catalog()
    #objs[0].autoreject()
    #objs[0].reject([44001, 44032])
    #dendrocat.utils.save_regions(objs[0].catalog, '/users/bmcclell/nrao/reg/test_mass_photometry.reg')
    #print('Autorejection complete')

    t = Table.read('/users/bmcclell/nrao/cat/w51IRS2_photometered.dat',
                   format='ascii')
    #for col in t.colnames:
    #    if 'GHz' in col:
    #        t.remove_column(col)

    mc = dendrocat.MasterCatalog(*objs, catalog=t)
    print('\nMaster Catalog made')
    start = time.time()
    mc.photometer(dendrocat.ellipse)
    stop = time.time()
    print('Ellipse apertures photometered. Time: {} s'.format(stop - start))
    start = time.time()
    mc.photometer(dendrocat.annulus)
    stop = time.time()
    print('Annulus apertures photometered. Time: {} s'.format(stop - start))
    start = time.time()
    mc.catalog.write(outfile, format='ascii', overwrite=True)
    stop = time.time()
    print('Catalog written. Time: {} s'.format(stop - start))
コード例 #2
0
from astropy.table import Table
import astropy.units as u
from astropy.io import fits
import numpy as np
import dendrocat

t = Table(Table.read(
    '/users/bmcclell/nrao/cat/43-93-226GHz_photometered_ellipse.dat',
    format='ascii'),
          masked=True)

rs1 = dendrocat.RadioSource(
    fits.open(
        '/lustre/aoc/students/bmcclell/w51/W51e2_cont_briggsSC_tclean.image.fits.gz'
    ))
rs2 = dendrocat.RadioSource(
    fits.open(
        '/lustre/aoc/students/bmcclell/w51/w51e2_sci.spw0_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_17_18_19.mfs.I.manual.image.tt0.pbcor.fits.gz'
    ))
rs3 = dendrocat.RadioSource(
    fits.open(
        '/lustre/aoc/students/bmcclell/w51/W51e2w_QbandAarray_cont_spws_continuum_cal_clean_2terms_robust0_incrementalselfcal8.image.tt0.pbcor.icrs.fits'
    ))

rs3.nu = 45 * u.GHz
rs3.freq_id = '45GHz'
rs3.set_metadata()

mc = dendrocat.MasterCatalog(rs1, rs2, rs3, catalog=t)
nus, fluxes, errs = mc.plot_sed(mc.catalog[23],
                                aperture='ellipse',
コード例 #3
0
ファイル: sedgrids_IRS2.py プロジェクト: mccbc/nrao
from astropy.table import Table
from astropy.io import fits
import dendrocat
import astropy.units as u
import numpy as np
import matplotlib.gridspec as gs
import matplotlib.pyplot as plt
from collections import OrderedDict

irs2 = Table.read('/users/bmcclell/nrao/cat/w51IRS2_photometered.dat',
                  format='ascii')

n1 = dendrocat.RadioSource(
    fits.open(
        '/users/bmcclell/Data/irs2/w51n_band6_226GHz_adjustedRADEC.fits'))
n2 = dendrocat.RadioSource(
    fits.open(
        '/users/bmcclell/Data/irs2/w51north_sci.spw0_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_17_18_19.mfs.I.manual.image.tt0.pbcor.fits'
    ))
n3 = dendrocat.RadioSource(
    fits.open('/users/bmcclell/Data/irs2/w51n_bandQ_45GHz_adjustedRADEC.fits'))

n3.nu = 45.0 * u.GHz
n3.freq_id = '45.0GHz'
n3.set_metadata()

mc = dendrocat.MasterCatalog(n1, n2, n3, catalog=irs2)
accepted = mc.catalog[mc.catalog['rejected'] == 0]

for i in range(len(accepted)):
    nus, fluxes, errs = mc.plotsedgrid(
コード例 #4
0
ファイル: externalcat_test.py プロジェクト: mccbc/dendrocat
from astropy.io import fits
from astropy.table import Table
import dendrocat
import astropy.units as u

t = Table(Table.read(
    '/users/bmcclell/nrao/cat/45-93-226GHz_photometered_adjustedRADEC.dat',
    format='ascii'),
          masked=True)

rs1 = dendrocat.RadioSource(
    fits.open(
        '/lustre/aoc/students/bmcclell/w51/W51e2_cont_briggsSC_tclean.image.fits.gz'
    ))
rs2 = dendrocat.RadioSource(
    fits.open('/users/bmcclell/Data/W51e2_band3_93GHz_adjustedRADEC.fits'))
rs3 = dendrocat.RadioSource(
    fits.open('/users/bmcclell/Data/W51e2w_QbandAarray_adjustedRADEC.fits'))

rs3.nu = 45 * u.GHz
rs3.freq_id = '45GHz'
rs3.set_metadata()

mc = dendrocat.MasterCatalog(rs1, rs2, rs3, catalog=t)

ext = Table.read('/users/bmcclell/Data/EVLA_VLA_PointSourcePhotometry.ipac',
                 format='ipac')

ra = 'gracen'
dec = 'gdeccen'
freq = 'Frequency'
コード例 #5
0
ファイル: ffplot_test.py プロジェクト: mccbc/dendrocat
import dendrocat
from astropy.io import fits
import matplotlib.pyplot as plt

rs1 = dendrocat.RadioSource(
    fits.open(
        '/lustre/aoc/students/bmcclell/w51/W51e2_cont_briggsSC_tclean.image.fits.gz'
    ))
rs2 = dendrocat.RadioSource(
    fits.open(
        '/lustre/aoc/students/bmcclell/w51/w51e2_sci.spw0_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_17_18_19.mfs.I.manual.image.tt0.pbcor.fits.gz'
    ))

rs1.autoreject()
rs2.autoreject()

rs1.reject([0, 12, 59, 89, 98, 99, 106])
rs2.reject([8, 9, 14, 18, 21, 42])

mc = dendrocat.match(rs1, rs2)
dendrocat.ffplot(mc, rs2, rs1)
plt.show()
コード例 #6
0
import dendrocat
from astropy.io import fits
import astropy.units as u
from astropy.table import Table
from dendrocat.aperture import *

rs1 = dendrocat.RadioSource(
    fits.open(
        '/media/connor/Lore/Summer2018/Data/W51e2_cont_briggsSC_tclean.image.fits.gz'
    ))
rs2 = dendrocat.RadioSource(
    fits.open(
        '/media/connor/Lore/Summer2018/Data/W51e2_band3_93GHz_adjustedRADEC.fits'
    ))
rs3 = dendrocat.RadioSource(
    fits.open(
        '/media/connor/Lore/Summer2018/Data/W51e2w_QbandAarray_adjustedRADEC.fits'
    ))

rs3.nu = 45.0 * u.GHz
rs3.freq_id = '45.0GHz'
rs3.set_metadata()

rs1.autoreject()
rs2.autoreject()

rs1.add_sources(
    Table.read('/media/connor/Lore/Summer2018/nrao/cat/special_source.dat',
               format='ascii'))
rs1.reject(
    [226000, 226008, 226016, 226023, 226028, 226085, 226124, 226135, 226137])
コード例 #7
0
ファイル: newaperture_test.py プロジェクト: mccbc/nrao
import dendrocat
from astropy.io import fits
import astropy.units as u
import matplotlib.pyplot as plt

rs1 = dendrocat.RadioSource(
    fits.open(
        '/users/bmcclell/Data/e1e2/W51e2_cont_briggsSC_tclean.image.fits.gz'))
rs1.to_catalog()
rs1.autoreject()

circ = dendrocat.aperture.Circle([40, 40], 20 * u.pix)
rs1.plot_grid(source_aperture=circ)
plt.show()
コード例 #8
0
def dendrocatify(regname,
                 fn,
                 threshold=4,
                 min_npix=100,
                 min_delta=1,
                 cutout=None,
                 cutout_header=None,
                 snr_threshold=5,
                 noiselevel_table='noise_levels.json'):

    noisefilepath = f"{catalog_path}/{noiselevel_table}"
    if os.path.exists(noisefilepath):
        with open(noisefilepath, 'r') as fh:
            noiselevel_table = json.load(fh)
    else:
        noiselevel_table = {}

    print(f"Starting region {regname}: {fn}")
    if cutout_header is None or cutout is None:
        fh = fits.open(fn)
        data = fh[0].data
        header = fh[0].header
        # LONPOLE isn't very relevant and LATPOLE is not part of the coordinate
        # systems we're interested in.  From Calabretta 2002: "LATPOLEa is never
        # required for zenithal projections"
        try:
            del header['LONPOLE']
            del header['LATPOLE']
        except KeyError:
            pass
        ww = wcs.WCS(header)
        pixscale = wcs.utils.proj_plane_pixel_area(ww)**0.5 * u.deg
        reg = cutout_regions[regname].to_pixel(ww)
        mask = reg.to_mask()
        data_sm = convolve_fft(data,
                               Gaussian2DKernel(
                                   (45 * u.arcsec / pixscale).decompose()),
                               allow_huge=True)
        data_filtered = data - data_sm
        err = mad_std(data_filtered)
        cutout = mask.multiply(data_filtered)
        frame = wcs.utils.wcs_to_celestial_frame(ww)

        # TODO: check that this is working - the regions output seem to be offset?
        ww_cutout = ww[mask.bbox.iymin:mask.bbox.iymax,
                       mask.bbox.ixmin:mask.bbox.ixmax]

        # add beam parameters to header
        cutout_header = ww_cutout.to_header()
        cutout_header['BMAJ'] = mustang_beam_fwhm.to(u.deg).value
        cutout_header['BMIN'] = mustang_beam_fwhm.to(u.deg).value
        cutout_header['BUNIT'] = 'Jy/beam'
        cutout_header['TELESCOP'] = 'GBT'
        cutout_header['FREQ'] = mustang_central_frequency.to(u.Hz).value

        avg_noise = mad_std(data, ignore_nan=True)
        filt_avg_noise = mad_std(cutout, ignore_nan=True)
        noiselevel_table[regname] = {
            'noise': avg_noise,
            'filtered_noise': filt_avg_noise
        }
        with open(noisefilepath, 'w') as fh:
            json.dump(noiselevel_table, fh)

    print(
        f"Beginning cataloging.  Noise is {avg_noise:0.4f} before and {filt_avg_noise:0.4f} after filtering"
    )
    radiosource = dendrocat.RadioSource(
        [fits.PrimaryHDU(data=cutout, header=cutout_header)])
    radiosource.nu = mustang_central_frequency
    radiosource.freq_id = 'MUSTANG'
    radiosource.set_metadata()
    print("Running to_dendrogram")
    radiosource.to_dendrogram(
        min_value=err * threshold,
        min_delta=err * min_delta,
        min_npix=min_npix,
    )
    print("Making plot grid")
    radiosource.plot_grid(
        skip_rejects=False,
        outfile=
        f'{catalog_figure_path}/{regname}_dendrocat_thr{threshold}_minn{min_npix}_mind{min_delta}_prerejection.png',
        figurekwargs={'num': 1},
    )
    pl.figure(1).clf()
    #radiosource.autoreject(threshold=5.0)
    rejected = radiosource.catalog[
        'MUSTANG_dend_flux'] / filt_avg_noise < snr_threshold
    #radiosource.catalog.add_column(Column(rejected, name='rejected'))
    radiosource.catalog['rejected'] = rejected.astype('int')
    print("Rejected {0}, kept {1}, of {2} total sources".format(
        radiosource.catalog['rejected'].sum(),
        (1 - radiosource.catalog['rejected']).sum(), len(radiosource.catalog)))
    radiosource.plot_grid(
        skip_rejects=False,
        outfile=
        f'{catalog_figure_path}/{regname}_dendrocat_thr{threshold}_minn{min_npix}_mind{min_delta}_postrejection.png',
        figurekwargs={'num': 1},
    )
    pl.figure(1).clf()
    #dend = astrodendro.Dendrogram.compute(cutout,
    #                                      min_value=err*threshold,
    #                                      min_delta=err*min_delta,
    #                                      verbose=True, min_npix=min_npix,
    #                                      wcs=ww_cutout)
    dend = radiosource.dendrogram

    pl.figure(2).clf()
    ax = pl.gca()
    ax.cla()
    pl.imshow(cutout,
              cmap='gray_r',
              interpolation='none',
              origin='lower',
              vmax=0.01,
              vmin=-0.001)
    pltr = dend.plotter()
    print("Contouring dendrogram leaves")
    for struct in ProgressBar(dend.leaves):
        pltr.plot_contour(ax,
                          structure=struct,
                          colors=['r'],
                          linewidths=[0.9],
                          zorder=5)
        if struct.parent:
            while struct.parent:
                struct = struct.parent
            pltr.plot_contour(ax,
                              structure=struct,
                              colors=[(0, 1, 0, 1)],
                              linewidths=[0.5])

    cntr = pl.gca().collections

    pl.setp([x for x in cntr if x.get_color()[0, 0] == 1], linewidth=0.25)
    pl.setp([x for x in cntr if x.get_color()[0, 1] == 1], linewidth=0.25)
    pl.savefig(
        f'{catalog_figure_path}/{regname}_dend_contour_thr{threshold}_minn{min_npix}_mind{min_delta}.pdf'
    )

    # zoom only for G31
    if regname == 'G31':
        pl.axis((1125.4006254228616, 1670.3650637799306, 1291.6829155596627,
                 1871.8063499397681))
        pl.setp([x for x in cntr if x.get_color()[0, 0] == 1],
                linewidth=0.75)  # Red
        pl.setp([x for x in cntr if x.get_color()[0, 1] == 1],
                linewidth=0.5)  # Green
        pl.savefig(
            f'{catalog_figure_path}/{regname}_dend_contour_thr{threshold}_minn{min_npix}_mind{min_delta}_zoom.pdf'
        )

    #metadata = {'data_unit': u.Jy / u.beam,
    #            'beam_major': 8*u.arcsec,
    #            'beam_minor': 8*u.arcsec,
    #            'wcs': ww_cutout,
    #            'spatial_scale': wcs.utils.proj_plane_pixel_scales(ww_cutout).mean()*u.deg,
    #           }
    #ppcat = astrodendro.pp_catalog(dend, metadata)

    ppcat = radiosource.catalog

    mastercatalog = dendrocat.MasterCatalog(radiosource, catalog=ppcat)
    aperture1 = Circle([0, 0], 10 * u.arcsec, name='10as', frame=frame.name)
    aperture2 = Circle([0, 0], 15 * u.arcsec, name='15as', frame=frame.name)
    background = Annulus([0, 0],
                         inner=15 * u.arcsec,
                         outer=20 * u.arcsec,
                         name='background',
                         frame=frame.name)
    print("Beginning photometry ...")
    mastercatalog.photometer(aperture1, aperture2, background)
    print()

    source_center = coordinates.SkyCoord(mastercatalog.catalog['x_cen'],
                                         mastercatalog.catalog['y_cen'],
                                         unit=(u.deg, u.deg),
                                         frame=frame.name)
    source_name = [
        "G{0:0.3f}{1:+0.3f}".format(sc.galactic.l.deg, sc.galactic.b.deg)
        for sc in source_center
    ]
    mastercatalog.catalog.add_column(
        Column(name='SourceName', data=source_name))

    mastercatalog.catalog.write(
        f'{catalog_path}/{regname}_dend_contour_thr{threshold}_minn{min_npix}_mind{min_delta}.ipac',
        format='ascii.ipac')

    regs = ppcat_to_regions(ppcat, frame.name)
    regions.write_ds9(
        regions=regs,
        filename=
        f'{catalog_path}/{regname}_dend_contour_thr{threshold}_minn{min_npix}_mind{min_delta}.reg'
    )

    return radiosource, dend, mastercatalog, ppcat