for problem_name in problem_names:
            print(f"Loop {counter} of {total_count}")
            counter += 1
            # build problem
            var_names = ["x" + str(i + 1) for i in range(n_var)]
            obj_names = ["f" + str(i + 1) for i in range(n_obj)]
            prob = wfg_problem(
                name=problem_name, n_of_objectives=n_obj, n_of_variables=n_var
            )
            variables = variable_builder(
                names=var_names,
                initial_values=prob.lower,
                lower_bounds=prob.lower,
                upper_bounds=prob.upper,
            )
            objective = VectorObjective(name=obj_names, evaluator=prob.eval)
            problem = MOProblem([objective], variables, None)
            problem.ideal = prob.ideal
            problem.nadir = (
                abs(np.random.normal(size=n_obj, scale=0.15)) + 1
            ) * prob.nadir

            true_nadir = prob.nadir

            scalar = asf(ideal=problem.ideal, nadir=true_nadir)

            # a posteriori
            a_post_rvea = RVEA(
                problem=problem, interact=False, n_gen_per_iter=gen, n_iterations=4
            )
            a_post_nsga = NSGAIII(
def test_problem_builder(name: str,
                         n_of_variables: int = None,
                         n_of_objectives: int = None) -> MOProblem:
    """Build test problems. Currently supported: ZDT1-4, ZDT6, and DTLZ1-7.

    Args:
        name (str): Name of the problem in all caps. For example: "ZDT1", "DTLZ4", etc.
        n_of_variables (int, optional): Number of variables. Required for DTLZ problems,
            but can be skipped for ZDT problems as they only support one variable value.
        n_of_objectives (int, optional): Required for DTLZ problems,
            but can be skipped for ZDT problems as they only support one variable value.

    Raises:
        ProblemError: When one of many issues occur while building the MOProblem
            instance.

    Returns:
        MOProblem: The test problem object
    """
    problems = {
        "ZDT1": zdt.ZDT1,
        "ZDT2": zdt.ZDT2,
        "ZDT3": zdt.ZDT3,
        "ZDT4": zdt.ZDT4,
        "ZDT5": zdt.ZDT5,
        "ZDT6": zdt.ZDT6,
        "DTLZ1": dtlz.DTLZ1,
        "DTLZ2": dtlz.DTLZ2,
        "DTLZ3": dtlz.DTLZ3,
        "DTLZ4": dtlz.DTLZ4,
        "DTLZ5": dtlz.DTLZ5,
        "DTLZ6": dtlz.DTLZ6,
        "DTLZ7": dtlz.DTLZ7,
    }
    num_var = {"ZDT1": 30, "ZDT2": 30, "ZDT3": 30, "ZDT4": 10, "ZDT6": 10}
    if not (name in problems.keys()):
        msg = (
            "Specified Problem not yet supported.\n The supported problems are:"
            + str(problems.keys()))
        raise ProblemError(msg)
    if "ZDT" in name:
        if n_of_variables is None:
            n_of_variables = num_var[name]
        if n_of_objectives is None:
            n_of_objectives = 2
        if not (n_of_variables == num_var[name]):
            msg = (name + " problem has been limited to " +
                   str(num_var[name]) +
                   " variables. Number of variables recieved = " +
                   str(n_of_variables))
            raise ProblemError(msg)
        if not (n_of_objectives == 2):
            msg = ("ZDT problems can only have 2 objectives. " +
                   "Number of objectives recieved = " + str(n_of_objectives))
            raise ProblemError(msg)
        obj_func = problems[name]()
    elif "DTLZ" in name:
        if (n_of_variables is None) or (n_of_objectives is None):
            msg = ("Please provide both number of variables and objectives" +
                   " for the DTLZ problems")
            raise ProblemError(msg)
        obj_func = problems[name](n_of_objectives, n_of_variables)
    else:
        msg = "How did you end up here?"
        raise ProblemError(msg)
    lower_limits = obj_func.min_bounds
    upper_limits = obj_func.max_bounds
    var_names = ["x" + str(i + 1) for i in range(n_of_variables)]
    obj_names = ["f" + str(i + 1) for i in range(n_of_objectives)]
    variables = variable_builder(
        names=var_names,
        initial_values=lower_limits,
        lower_bounds=lower_limits,
        upper_bounds=upper_limits,
    )

    # Because optproblems can only handle one objective at a time
    def modified_obj_func(x):
        if isinstance(x, list):
            if len(x) == n_of_variables:
                return [obj_func(x)]
            elif len(x[0]) == n_of_variables:
                return list(map(obj_func, x))
        else:
            if x.ndim == 1:
                return [obj_func(x)]
            elif x.ndim == 2:
                return list(map(obj_func, x))
        raise TypeError("Unforseen problem, contact developer")

    objective = VectorObjective(name=obj_names, evaluator=modified_obj_func)
    problem = MOProblem([objective], variables, None)
    return problem
コード例 #3
0
        xs = np.atleast_2d(xs)
        return -8.21 + (0.71 / (1.09 - xs[:, 0]**2))

    def f4(xs):
        xs = np.atleast_2d(xs)
        return -0.96 + (0.96 / (1.09 - xs[:, 1]**2))

    def objectives(xs):
        return np.stack((f1(xs), f2(xs), f3(xs), f4(xs))).T

    obj1 = _ScalarObjective("obj1", f1)
    obj2 = _ScalarObjective("obj2", f2)
    obj3 = _ScalarObjective("obj3", f3)
    obj4 = _ScalarObjective("obj4", f4)

    objkaikki = VectorObjective("obj", objectives)

    # variables
    var_names = ["x1", "x2"
                 ]  # Make sure that the variable names are meaningful to you.

    initial_values = np.array([0.5, 0.5])
    lower_bounds = [0.3, 0.3]
    upper_bounds = [1.0, 1.0]
    bounds = np.stack((lower_bounds, upper_bounds))
    variables = variable_builder(var_names, initial_values, lower_bounds,
                                 upper_bounds)

    # problem
    prob = MOProblem(objectives=[obj1, obj2, obj3, obj4],
                     variables=variables)  # objectives "seperately"
コード例 #4
0
ファイル: iopis2.py プロジェクト: light-weaver/desdeo-emo
        ) * self._max_multiplier)


n_obj = 3
n_var = 10
benchmark = dtlz.DTLZ1(num_objectives=n_obj, num_variables=n_var)

variables = variable_builder(
    names=[f"x{i+1}" for i in range(n_var)],
    initial_values=[0] * n_var,
    lower_bounds=[0] * n_var,
    upper_bounds=[1] * n_var,
)

objectives = [
    VectorObjective(name=[f"f{i+1}" for i in range(n_obj)],
                    evaluator=lambda x: np.asarray(list(map(benchmark, x))))
]

utopian = np.asarray([0, 0, 0]) - 1e-6
nadir = np.asarray([1, 1, 1])

PIS = classificationPIS(scalarizers=[AUG_GUESS_GLIDE],
                        utopian=utopian,
                        nadir=nadir)

first_preference = {
    "classifications": ["=", ">=", "<="],
    "current solution": np.asarray([0.5, 0.5, 0.5]),
    "levels": np.asarray([0.5, 0.8, 0.2]),
}
PIS.update_preference(first_preference)