def payoff_table_method( problem: MOProblem, initial_guess: Optional[np.ndarray] = None, solver_method: Optional[Union[ScalarMethod, str]] = "scipy_de", ) -> Tuple[np.ndarray, np.ndarray]: """Uses the payoff table method to solve for the ideal and nadir points of a MOProblem. Call through to payoff_table_method_general. Args: problem (MOProblem): The problem defined as a MOProblem class instance. initial_guess (Optional[np.ndarray]): The initial guess of decision variables to be used in the solver. If None, uses the lower bounds defined for the variables in MOProblem. Defaults to None. solver_method (Optional[Union[ScalarMethod, str]]): The method used to minimize the invidual problems in the payoff table method. Defaults to 'scipy_de'. Returns: Tuple[np.ndarray, np.ndarray]: The ideal and nadir points """ if problem.n_of_constraints > 0: constraints = lambda x: problem.evaluate(x).constraints.squeeze() else: constraints = None return payoff_table_method_general( lambda xs: problem.evaluate(xs).objectives, problem.n_of_objectives, problem.get_variable_bounds(), constraints, initial_guess, solver_method, )
def solve_pareto_front_representation( problem: MOProblem, step: Optional[Union[np.ndarray, float]] = 0.1, eps: Optional[float] = 1e-6, solver_method: Optional[Union[ScalarMethod, str]] = "scipy_de", ) -> Tuple[np.ndarray, np.ndarray]: """Pass through to solve_pareto_front_representation_general when the problem for which the front is being calculated for is defined as an MOProblem object. Computes a representation of a Pareto efficient front from a multiobjective minimizatino problem. Does so by generating an evenly spaced set of reference points (in the objective space), in the space spanned by the supplied ideal and nadir points. The generated reference points are then used to formulate achievement scalaraization problems, which when solved, yield a representation of a Pareto efficient solution. Args: problem (MOProblem): The multiobjective minimization problem for which the front is to be solved for. step (Optional[Union[np.ndarray, float]], optional): Either a float or an array of floats. If a single float is given, generates reference points with the objectives having values a step apart between the ideal and nadir points. If an array of floats is given, use the steps defined in the array for each objective's values. Default to 0.1. eps (Optional[float], optional): An offset to be added to the nadir value to keep the nadir inside the range when generating reference points. Defaults to 1e-6. solver_method (Optional[Union[ScalarMethod, str]], optional): The method used to minimize the achievement scalarization problems arising when calculating Pareto efficient solutions. Defaults to "scipy_de". Returns: Tuple[np.ndarray, np.ndarray]: A tuple containing representations of the Pareto optimal variable values, and the corresponsing objective values. """ if problem.n_of_constraints > 0: constraints = lambda x: problem.evaluate(x).constraints.squeeze() else: constraints = None var_values, obj_values = solve_pareto_front_representation_general( lambda x: problem.evaluate(x).objectives, problem.n_of_objectives, problem.get_variable_bounds(), step, eps, problem.ideal * problem._max_multiplier, problem.nadir * problem._max_multiplier, constraints, solver_method, ) return var_values, obj_values * problem._max_multiplier
def __init__(self, problem: MOProblem, scalar_method: Optional[ScalarMethod] = None): # check if ideal and nadir are defined if problem.ideal is None or problem.nadir is None: # TODO: use same method as defined in scalar_method ideal, nadir = payoff_table_method(problem) self._ideal = ideal self._nadir = nadir else: self._ideal = problem.ideal self._nadir = problem.nadir self._scalar_method = scalar_method # generate Pareto optimal starting point asf = SimpleASF(np.ones(self._ideal.shape)) scalarizer = Scalarizer( lambda x: problem.evaluate(x).objectives, asf, scalarizer_args={"reference_point": np.atleast_2d(self._ideal)}, ) if problem.n_of_constraints > 0: _con_eval = lambda x: problem.evaluate(x).constraints.squeeze() else: _con_eval = None solver = ScalarMinimizer( scalarizer, problem.get_variable_bounds(), constraint_evaluator=_con_eval, method=self._scalar_method, ) # TODO: fix tools to check for scipy methods in general and delete me! solver._use_scipy = True res = solver.minimize(problem.get_variable_upper_bounds() / 2) if res["success"]: self._current_solution = res["x"] self._current_objectives = problem.evaluate( self._current_solution).objectives.squeeze() self._archive_solutions = [] self._archive_objectives = [] self._state = "classify" super().__init__(problem)