def setup_pipeline(config): """ Given a configuration from QLF, this sets up a pipeline [pa,qa] and also returns a conversion dictionary from the configuration dictionary so that Pipeline steps (PA) can take them. This is required for runpipeline. """ import astropy.io.fits as fits import desispec.io.fibermap as fibIO import desispec.io.sky as skyIO import desispec.io.fiberflat as ffIO import desispec.fiberflat as ff import desispec.io.image as imIO import desispec.image as im import desispec.io.frame as frIO import desispec.frame as dframe from desispec.quicklook import procalgs from desispec.boxcar import do_boxcar qlog=qllogger.QLLogger("QuickLook",20) log=qlog.getlog() if config is None: return None log.info("Reading Configuration") if "RawImage" not in config: log.critical("Config is missing \"RawImage\" key.") sys.exit("Missing \"RawImage\" key.") inpname=config["RawImage"] if "FiberMap" not in config: log.critical("Config is missing \"FiberMap\" key.") sys.exit("Missing \"FiberMap\" key.") fibname=config["FiberMap"] proctype="Exposure" if "Camera" in config: camera=config["Camera"] if "DataType" in config: proctype=config["DataType"] debuglevel=20 if "DebugLevel" in config: debuglevel=config["DebugLevel"] log.setLevel(debuglevel) hbeat=QLHB.QLHeartbeat(log,config["Period"],config["Timeout"]) if config["Timeout"]> 200.0: log.warning("Heartbeat timeout exceeding 200.0 seconds") dumpintermediates=False if "DumpIntermediates" in config: dumpintermediates=config["DumpIntermediates"] biasimage=None #- This will be the converted dictionary key biasfile=None if "BiasImage" in config: biasfile=config["BiasImage"] darkimage=None darkfile=None if "DarkImage" in config: darkfile=config["DarkImage"] pixelflatfile=None pixflatimage=None if "PixelFlat" in config: pixelflatfile=config["PixelFlat"] fiberflatimagefile=None fiberflatimage=None if "FiberFlatImage" in config: fiberflatimagefile=config["FiberFlatImage"] arclampimagefile=None arclampimage=None if "ArcLampImage" in config: arclampimagefile=config["ArcLampImage"] fiberflatfile=None fiberflat=None if "FiberFlatFile" in config: fiberflatfile=config["FiberFlatFile"] skyfile=None skyimage=None if "SkyFile" in config: skyfile=config["SkyFile"] psf=None if "PSFFile" in config: #from specter.psf import load_psf import desispec.psf psf=desispec.psf.PSF(config["PSFFile"]) #psf=load_psf(config["PSFFile"]) if "basePath" in config: basePath=config["basePath"] hbeat.start("Reading input file %s"%inpname) inp=fits.open(inpname) #- reading raw image directly from astropy.io.fits hbeat.start("Reading fiberMap file %s"%fibname) fibfile,fibhdr=fibIO.read_fibermap(fibname,header=True) convdict={"FiberMap":fibfile} if psf is not None: convdict["PSFFile"]=psf if biasfile is not None: hbeat.start("Reading Bias Image %s"%biasfile) biasimage=imIO.read_image(biasfile) convdict["BiasImage"]=biasimage if darkfile is not None: hbeat.start("Reading Dark Image %s"%darkfile) darkimage=imIO.read_image(darkfile) convdict["DarkImage"]=darkimage if pixelflatfile: hbeat.start("Reading PixelFlat Image %s"%pixelflatfile) pixelflatimage=imIO.read_image(pixelflatfile) convdict["PixelFlat"]=pixelflatimage if fiberflatimagefile: hbeat.start("Reading FiberFlat Image %s"%fiberflatimagefile) fiberflatimage=imIO.read_image(fiberflatimagefile) convdict["FiberFlatImage"]=fiberflatimage if arclampimagefile: hbeat.start("Reading ArcLampImage %s"%arclampimagefile) arclampimage=imIO.read_image(arclampimagefile) convdict["ArcLampImage"]=arclampimage if fiberflatfile: hbeat.start("Reading FiberFlat %s"%fiberflatfile) fiberflat=ffIO.read_fiberflat(fiberflatfile) convdict["FiberFlatFile"]=fiberflat if skyfile: hbeat.start("Reading SkyModel file %s"%skyfile) skymodel=skyIO.read_sky(skyfile) convdict["SkyFile"]=skymodel if dumpintermediates: convdict["DumpIntermediates"]=dumpintermediates hbeat.stop("Finished reading all static files") img=inp convdict["rawimage"]=img pipeline=[] for step in config["PipeLine"]: pa=getobject(step["PA"],log) if len(pipeline) == 0: if not pa.is_compatible(type(img)): log.critical("Pipeline configuration is incorrect! check configuration %s %s"%(img,pa.is_compatible(img))) sys.exit("Wrong pipeline configuration") else: if not pa.is_compatible(pipeline[-1][0].get_output_type()): log.critical("Pipeline configuration is incorrect! check configuration") log.critical("Can't connect input of %s to output of %s. Incompatible types"%(pa.name,pipeline[-1][0].name)) sys.exit("Wrong pipeline configuration") qas=[] for q in step["QAs"]: qa=getobject(q,log) if not qa.is_compatible(pa.get_output_type()): log.warning("QA %s can not be used for output of %s. Skipping expecting %s got %s %s"%(qa.name,pa.name,qa.__inpType__,pa.get_output_type(),qa.is_compatible(pa.get_output_type()))) else: qas.append(qa) pipeline.append([pa,qas]) return pipeline,convdict
def simulate_one_healpix(ifilename, args, model, obsconditions, decam_and_wise_filters, footprint_healpix_weight, footprint_healpix_nside, seed): log = get_logger() # set seed now # we need a seed per healpix because # the spectra simulator REQUIRES a seed np.random.seed(seed) healpix = 0 nside = 0 vals = os.path.basename(ifilename).split(".")[0].split("-") if len(vals) < 3: log.error("Cannot guess nside and healpix from filename {}".format( ifilename)) raise ValueError( "Cannot guess nside and healpix from filename {}".format( ifilename)) try: healpix = int(vals[-1]) nside = int(vals[-2]) except ValueError: raise ValueError( "Cannot guess nside and healpix from filename {}".format( ifilename)) zbest_filename = None if args.outfile: ofilename = args.outfile else: ofilename = os.path.join( args.outdir, "{}/{}/spectra-{}-{}.fits".format(healpix // 100, healpix, nside, healpix)) pixdir = os.path.dirname(ofilename) if args.zbest: zbest_filename = os.path.join( pixdir, "zbest-{}-{}.fits".format(nside, healpix)) if not args.overwrite: # check whether output exists or not if args.zbest: if os.path.isfile(ofilename) and os.path.isfile(zbest_filename): log.info("skip existing {} and {}".format( ofilename, zbest_filename)) return else: # only test spectra file if os.path.isfile(ofilename): log.info("skip existing {}".format(ofilename)) return log.info("Read skewers in {}, random seed = {}".format(ifilename, seed)) trans_wave, transmission, metadata = read_lya_skewers(ifilename) ok = np.where((metadata['Z'] >= args.zmin) & (metadata['Z'] <= args.zmax))[0] transmission = transmission[ok] metadata = metadata[:][ok] # create quasars if args.desi_footprint: footprint_healpix = footprint.radec2pix(footprint_healpix_nside, metadata["RA"], metadata["DEC"]) selection = np.where( footprint_healpix_weight[footprint_healpix] > 0.99)[0] log.info("Select QSOs in DESI footprint {} -> {}".format( transmission.shape[0], selection.size)) if selection.size == 0: log.warning("No intersection with DESI footprint") return transmission = transmission[selection] metadata = metadata[:][selection] nqso = transmission.shape[0] if args.downsampling is not None: if args.downsampling <= 0 or args.downsampling > 1: log.error( "Down sampling fraction={} must be between 0 and 1".format( args.downsampling)) raise ValueError( "Down sampling fraction={} must be between 0 and 1".format( args.downsampling)) indices = np.where(np.random.uniform(size=nqso) < args.downsampling)[0] if indices.size == 0: log.warning( "Down sampling from {} to 0 (by chance I presume)".format( nqso)) return transmission = transmission[indices] metadata = metadata[:][indices] nqso = transmission.shape[0] if args.nmax is not None: if args.nmax < nqso: log.info( "Limit number of QSOs from {} to nmax={} (random subsample)". format(nqso, args.nmax)) # take a random subsample indices = (np.random.uniform(size=args.nmax) * nqso).astype(int) transmission = transmission[indices] metadata = metadata[:][indices] nqso = args.nmax if args.target_selection or args.mags: wanted_min_wave = 3329. # needed to compute magnitudes for decam2014-r (one could have trimmed the transmission file ...) wanted_max_wave = 55501. # needed to compute magnitudes for wise2010-W2 if trans_wave[0] > wanted_min_wave: log.info( "Increase wavelength range from {}:{} to {}:{} to compute magnitudes" .format(int(trans_wave[0]), int(trans_wave[-1]), int(wanted_min_wave), int(trans_wave[-1]))) # pad with zeros at short wavelength because we assume transmission = 0 # and we don't need any wavelength resolution here new_trans_wave = np.append([wanted_min_wave, trans_wave[0] - 0.01], trans_wave) new_transmission = np.zeros( (transmission.shape[0], new_trans_wave.size)) new_transmission[:, 2:] = transmission trans_wave = new_trans_wave transmission = new_transmission if trans_wave[-1] < wanted_max_wave: log.info( "Increase wavelength range from {}:{} to {}:{} to compute magnitudes" .format(int(trans_wave[0]), int(trans_wave[-1]), int(trans_wave[0]), int(wanted_max_wave))) # pad with ones at long wavelength because we assume transmission = 1 coarse_dwave = 2. # we don't care about resolution, we just need a decent QSO spectrum, there is no IGM transmission in this range n = int((wanted_max_wave - trans_wave[-1]) / coarse_dwave) + 1 new_trans_wave = np.append( trans_wave, np.linspace(trans_wave[-1] + coarse_dwave, trans_wave[-1] + coarse_dwave * (n + 1), n)) new_transmission = np.ones( (transmission.shape[0], new_trans_wave.size)) new_transmission[:, :trans_wave.size] = transmission trans_wave = new_trans_wave transmission = new_transmission log.info("Simulate {} QSOs".format(nqso)) tmp_qso_flux, tmp_qso_wave, meta = model.make_templates( nmodel=nqso, redshift=metadata['Z'], lyaforest=False, nocolorcuts=True, noresample=True, seed=seed) log.info("Resample to transmission wavelength grid") # because we don't want to alter the transmission field with resampling here qso_flux = np.zeros((tmp_qso_flux.shape[0], trans_wave.size)) for q in range(tmp_qso_flux.shape[0]): qso_flux[q] = np.interp(trans_wave, tmp_qso_wave, tmp_qso_flux[q]) tmp_qso_flux = qso_flux tmp_qso_wave = trans_wave log.info("Apply lya") tmp_qso_flux = apply_lya_transmission(tmp_qso_wave, tmp_qso_flux, trans_wave, transmission) bbflux = None if args.target_selection or args.mags: bands = ['FLUX_G', 'FLUX_R', 'FLUX_Z', 'FLUX_W1', 'FLUX_W2'] bbflux = dict() # need to recompute the magnitudes to account for lya transmission log.info("Compute QSO magnitudes") maggies = decam_and_wise_filters.get_ab_maggies( 1e-17 * tmp_qso_flux, tmp_qso_wave) for band, filt in zip(bands, [ 'decam2014-g', 'decam2014-r', 'decam2014-z', 'wise2010-W1', 'wise2010-W2' ]): bbflux[band] = np.ma.getdata(1e9 * maggies[filt]) # nanomaggies if args.target_selection: log.info("Apply target selection") isqso = isQSO_colors(gflux=bbflux['FLUX_G'], rflux=bbflux['FLUX_R'], zflux=bbflux['FLUX_Z'], w1flux=bbflux['FLUX_W1'], w2flux=bbflux['FLUX_W2']) log.info("Target selection: {}/{} QSOs selected".format( np.sum(isqso), nqso)) selection = np.where(isqso)[0] if selection.size == 0: return tmp_qso_flux = tmp_qso_flux[selection] metadata = metadata[:][selection] meta = meta[:][selection] for band in bands: bbflux[band] = bbflux[band][selection] nqso = selection.size log.info("Resample to a linear wavelength grid (needed by DESI sim.)") # we need a linear grid. for this resampling we take care of integrating in bins # we do not do a simple interpolation qso_wave = np.linspace(args.wmin, args.wmax, int((args.wmax - args.wmin) / args.dwave) + 1) qso_flux = np.zeros((tmp_qso_flux.shape[0], qso_wave.size)) for q in range(tmp_qso_flux.shape[0]): qso_flux[q] = resample_flux(qso_wave, tmp_qso_wave, tmp_qso_flux[q]) log.info("Simulate DESI observation and write output file") pixdir = os.path.dirname(ofilename) if len(pixdir) > 0: if not os.path.isdir(pixdir): log.info("Creating dir {}".format(pixdir)) os.makedirs(pixdir) if "MOCKID" in metadata.dtype.names: #log.warning("Using MOCKID as TARGETID") targetid = np.array(metadata["MOCKID"]).astype(int) elif "ID" in metadata.dtype.names: log.warning("Using ID as TARGETID") targetid = np.array(metadata["ID"]).astype(int) else: log.warning("No TARGETID") targetid = None log.warning("Assuming the healpix scheme is 'NESTED'") meta = {"HPXNSIDE": nside, "HPXPIXEL": healpix, "HPXNEST": True} if args.target_selection or args.mags: # today we write mags because that's what is in the fibermap mags = np.zeros((qso_flux.shape[0], 5)) for i, band in enumerate(bands): jj = (bbflux[band] > 0) mags[jj, i] = 22.5 - 2.5 * np.log10(bbflux[band][jj]) # AB magnitudes fibermap_columns = {"MAG": mags} else: fibermap_columns = None sim_spectra(qso_wave, qso_flux, args.program, obsconditions=obsconditions, spectra_filename=ofilename, sourcetype="qso", skyerr=args.skyerr, ra=metadata["RA"], dec=metadata["DEC"], targetid=targetid, meta=meta, seed=seed, fibermap_columns=fibermap_columns) if args.zbest: log.info("Read fibermap") fibermap = read_fibermap(ofilename) log.info("Writing a zbest file {}".format(zbest_filename)) columns = [('CHI2', 'f8'), ('COEFF', 'f8', (4, )), ('Z', 'f8'), ('ZERR', 'f8'), ('ZWARN', 'i8'), ('SPECTYPE', (str, 96)), ('SUBTYPE', (str, 16)), ('TARGETID', 'i8'), ('DELTACHI2', 'f8'), ('BRICKNAME', (str, 8))] zbest = Table(np.zeros(nqso, dtype=columns)) zbest["CHI2"][:] = 0. zbest["Z"] = metadata['Z'] zbest["ZERR"][:] = 0. zbest["ZWARN"][:] = 0 zbest["SPECTYPE"][:] = "QSO" zbest["SUBTYPE"][:] = "" zbest["TARGETID"] = fibermap["TARGETID"] zbest["DELTACHI2"][:] = 25. hzbest = pyfits.convenience.table_to_hdu(zbest) hzbest.name = "ZBEST" hfmap = pyfits.convenience.table_to_hdu(fibermap) hfmap.name = "FIBERMAP" hdulist = pyfits.HDUList([pyfits.PrimaryHDU(), hzbest, hfmap]) hdulist.writeto(zbest_filename, clobber=True) hdulist.close() # see if this helps with memory issue
def simulate_one_healpix(ifilename, args, model, obsconditions, decam_and_wise_filters, footprint_healpix_weight, footprint_healpix_nside, seed, bal=None): log = get_logger() # set seed now # we need a seed per healpix because # the spectra simulator REQUIRES a seed np.random.seed(seed) # read the header of the tranmission file to find the healpix pixel number, nside # and if we are lucky the scheme. # if this fails, try to guess it from the filename (for backward compatibility) healpix = -1 nside = -1 hpxnest = True hdulist = pyfits.open(ifilename) if "METADATA" in hdulist: head = hdulist["METADATA"].header for k in ["HPXPIXEL", "PIXNUM"]: if k in head: healpix = int(head[k]) log.info("healpix={}={}".format(k, healpix)) break for k in ["HPXNSIDE", "NSIDE"]: if k in head: nside = int(head[k]) log.info("nside={}={}".format(k, nside)) break for k in ["HPXNEST", "NESTED", "SCHEME"]: if k in head: if k == "SCHEME": hpxnest = (head[k] == "NEST") else: hpxnest = bool(head[k]) log.info("hpxnest from {} = {}".format(k, hpxnest)) break if healpix >= 0 and nside < 0: log.error("Read healpix in header but not nside.") raise ValueError("Read healpix in header but not nside.") if healpix < 0: vals = os.path.basename(ifilename).split(".")[0].split("-") if len(vals) < 3: log.error("Cannot guess nside and healpix from filename {}".format( ifilename)) raise ValueError( "Cannot guess nside and healpix from filename {}".format( ifilename)) try: healpix = int(vals[-1]) nside = int(vals[-2]) except ValueError: raise ValueError( "Cannot guess nside and healpix from filename {}".format( ifilename)) log.warning( "Guessed healpix and nside from filename, assuming the healpix scheme is 'NESTED'" ) zbest_filename = None if args.outfile: ofilename = args.outfile else: ofilename = os.path.join( args.outdir, "{}/{}/spectra-{}-{}.fits".format(healpix // 100, healpix, nside, healpix)) pixdir = os.path.dirname(ofilename) if args.zbest: zbest_filename = os.path.join( pixdir, "zbest-{}-{}.fits".format(nside, healpix)) if not args.overwrite: # check whether output exists or not if args.zbest: if os.path.isfile(ofilename) and os.path.isfile(zbest_filename): log.info("skip existing {} and {}".format( ofilename, zbest_filename)) return else: # only test spectra file if os.path.isfile(ofilename): log.info("skip existing {}".format(ofilename)) return log.info("Read skewers in {}, random seed = {}".format(ifilename, seed)) ##ALMA: It reads only the skewers only if there are no DLAs or if they are added randomly. if (not args.dla or args.dla == 'random'): trans_wave, transmission, metadata = read_lya_skewers(ifilename) ok = np.where((metadata['Z'] >= args.zmin) & (metadata['Z'] <= args.zmax))[0] transmission = transmission[ok] metadata = metadata[:][ok] ##ALMA:Added to read dla_info elif (args.dla == 'file'): log.info("Read DLA information in {}".format(ifilename)) trans_wave, transmission, metadata, dla_info = read_lya_skewers( ifilename, dla_='TRUE') ok = np.where((metadata['Z'] >= args.zmin) & (metadata['Z'] <= args.zmax))[0] transmission = transmission[ok] metadata = metadata[:][ok] else: log.error( 'Not a valid option to add DLAs. Valid options are "random" or "file"' ) sys.exit(1) if args.dla: dla_NHI, dla_z, dla_id = [], [], [] dla_filename = os.path.join(pixdir, "dla-{}-{}.fits".format(nside, healpix)) if args.desi_footprint: footprint_healpix = footprint.radec2pix(footprint_healpix_nside, metadata["RA"], metadata["DEC"]) selection = np.where( footprint_healpix_weight[footprint_healpix] > 0.99)[0] log.info("Select QSOs in DESI footprint {} -> {}".format( transmission.shape[0], selection.size)) if selection.size == 0: log.warning("No intersection with DESI footprint") return transmission = transmission[selection] metadata = metadata[:][selection] nqso = transmission.shape[0] if args.downsampling is not None: if args.downsampling <= 0 or args.downsampling > 1: log.error( "Down sampling fraction={} must be between 0 and 1".format( args.downsampling)) raise ValueError( "Down sampling fraction={} must be between 0 and 1".format( args.downsampling)) indices = np.where(np.random.uniform(size=nqso) < args.downsampling)[0] if indices.size == 0: log.warning( "Down sampling from {} to 0 (by chance I presume)".format( nqso)) return transmission = transmission[indices] metadata = metadata[:][indices] nqso = transmission.shape[0] ##ALMA:added to set transmission to 1 for z>zqso, this can be removed when transmission is corrected. for ii in range(len(metadata)): transmission[ii][trans_wave > 1215.67 * (metadata[ii]['Z'] + 1)] = 1.0 if (args.dla == 'file'): log.info('Adding DLAs from transmision file') min_trans_wave = np.min(trans_wave / 1215.67 - 1) for ii in range(len(metadata)): if min_trans_wave < metadata[ii]['Z']: idd = metadata['MOCKID'][ii] dlas = dla_info[dla_info['MOCKID'] == idd] dlass = [] for i in range(len(dlas)): ##Adding only dlas between zqso and 1.95, check again for the next version of London mocks... if (dlas[i]['Z_DLA'] < metadata[ii]['Z']) and (dlas[i]['Z_DLA'] > 1.95): dlass.append( dict(z=dlas[i]['Z_DLA'] + dlas[i]['DZ_DLA'], N=dlas[i]['N_HI_DLA'])) if len(dlass) > 0: dla_model = dla_spec(trans_wave, dlass) transmission[ii] = dla_model * transmission[ii] dla_z += [idla['z'] for idla in dlass] dla_NHI += [idla['N'] for idla in dlass] dla_id += [idd] * len(dlass) elif (args.dla == 'random'): log.info('Adding DLAs randomly') min_trans_wave = np.min(trans_wave / 1215.67 - 1) for ii in range(len(metadata)): if min_trans_wave < metadata[ii]['Z']: idd = metadata['MOCKID'][ii] dlass, dla_model = insert_dlas(trans_wave, metadata[ii]['Z']) if len(dlass) > 0: transmission[ii] = dla_model * transmission[ii] dla_z += [idla['z'] for idla in dlass] dla_NHI += [idla['N'] for idla in dlass] dla_id += [idd] * len(dlass) if args.dla: if len(dla_id) > 0: dla_meta = Table() dla_meta['NHI'] = dla_NHI dla_meta['z'] = dla_z dla_meta['ID'] = dla_id if args.nmax is not None: if args.nmax < nqso: log.info( "Limit number of QSOs from {} to nmax={} (random subsample)". format(nqso, args.nmax)) # take a random subsample indices = (np.random.uniform(size=args.nmax) * nqso).astype(int) transmission = transmission[indices] metadata = metadata[:][indices] nqso = args.nmax if args.dla: dla_meta = dla_meta[:][dla_meta['ID'] == metadata['MOCKID']] if args.target_selection or args.mags: wanted_min_wave = 3329. # needed to compute magnitudes for decam2014-r (one could have trimmed the transmission file ...) wanted_max_wave = 55501. # needed to compute magnitudes for wise2010-W2 if trans_wave[0] > wanted_min_wave: log.info( "Increase wavelength range from {}:{} to {}:{} to compute magnitudes" .format(int(trans_wave[0]), int(trans_wave[-1]), int(wanted_min_wave), int(trans_wave[-1]))) # pad with zeros at short wavelength because we assume transmission = 0 # and we don't need any wavelength resolution here new_trans_wave = np.append([wanted_min_wave, trans_wave[0] - 0.01], trans_wave) new_transmission = np.zeros( (transmission.shape[0], new_trans_wave.size)) new_transmission[:, 2:] = transmission trans_wave = new_trans_wave transmission = new_transmission if trans_wave[-1] < wanted_max_wave: log.info( "Increase wavelength range from {}:{} to {}:{} to compute magnitudes" .format(int(trans_wave[0]), int(trans_wave[-1]), int(trans_wave[0]), int(wanted_max_wave))) # pad with ones at long wavelength because we assume transmission = 1 coarse_dwave = 2. # we don't care about resolution, we just need a decent QSO spectrum, there is no IGM transmission in this range n = int((wanted_max_wave - trans_wave[-1]) / coarse_dwave) + 1 new_trans_wave = np.append( trans_wave, np.linspace(trans_wave[-1] + coarse_dwave, trans_wave[-1] + coarse_dwave * (n + 1), n)) new_transmission = np.ones( (transmission.shape[0], new_trans_wave.size)) new_transmission[:, :trans_wave.size] = transmission trans_wave = new_trans_wave transmission = new_transmission log.info("Simulate {} QSOs".format(nqso)) tmp_qso_flux, tmp_qso_wave, meta = model.make_templates( nmodel=nqso, redshift=metadata['Z'], lyaforest=False, nocolorcuts=True, noresample=True, seed=seed) log.info("Resample to transmission wavelength grid") # because we don't want to alter the transmission field with resampling here qso_flux = np.zeros((tmp_qso_flux.shape[0], trans_wave.size)) for q in range(tmp_qso_flux.shape[0]): qso_flux[q] = np.interp(trans_wave, tmp_qso_wave, tmp_qso_flux[q]) tmp_qso_flux = qso_flux tmp_qso_wave = trans_wave ##To add BALs to be checked by Luz and Jaime if (args.balprob): if (args.balprob <= 1. and args.balprob > 0): log.info("Adding BALs with probability {}".format(args.balprob)) tmp_qso_flux, meta_bal = bal.insert_bals(tmp_qso_wave, tmp_qso_flux, metadata['Z'], balprob=args.balprob, seed=seed) else: log.error("Probability to add BALs is not between 0 and 1") sys.exit(1) log.info("Apply lya") tmp_qso_flux = apply_lya_transmission(tmp_qso_wave, tmp_qso_flux, trans_wave, transmission) if args.metals is not None: lstMetals = '' for m in args.metals: lstMetals += m + ', ' log.info("Apply metals: {}".format(lstMetals[:-2])) tmp_qso_flux = apply_metals_transmission(tmp_qso_wave, tmp_qso_flux, trans_wave, transmission, args.metals) bbflux = None if args.target_selection or args.mags: bands = ['FLUX_G', 'FLUX_R', 'FLUX_Z', 'FLUX_W1', 'FLUX_W2'] bbflux = dict() # need to recompute the magnitudes to account for lya transmission log.info("Compute QSO magnitudes") maggies = decam_and_wise_filters.get_ab_maggies( 1e-17 * tmp_qso_flux, tmp_qso_wave) for band, filt in zip(bands, [ 'decam2014-g', 'decam2014-r', 'decam2014-z', 'wise2010-W1', 'wise2010-W2' ]): bbflux[band] = np.ma.getdata(1e9 * maggies[filt]) # nanomaggies if args.target_selection: log.info("Apply target selection") isqso = isQSO_colors(gflux=bbflux['FLUX_G'], rflux=bbflux['FLUX_R'], zflux=bbflux['FLUX_Z'], w1flux=bbflux['FLUX_W1'], w2flux=bbflux['FLUX_W2']) log.info("Target selection: {}/{} QSOs selected".format( np.sum(isqso), nqso)) selection = np.where(isqso)[0] if selection.size == 0: return tmp_qso_flux = tmp_qso_flux[selection] metadata = metadata[:][selection] meta = meta[:][selection] for band in bands: bbflux[band] = bbflux[band][selection] nqso = selection.size log.info("Resample to a linear wavelength grid (needed by DESI sim.)") # we need a linear grid. for this resampling we take care of integrating in bins # we do not do a simple interpolation qso_wave = np.linspace(args.wmin, args.wmax, int((args.wmax - args.wmin) / args.dwave) + 1) qso_flux = np.zeros((tmp_qso_flux.shape[0], qso_wave.size)) for q in range(tmp_qso_flux.shape[0]): qso_flux[q] = resample_flux(qso_wave, tmp_qso_wave, tmp_qso_flux[q]) log.info("Simulate DESI observation and write output file") pixdir = os.path.dirname(ofilename) if len(pixdir) > 0: if not os.path.isdir(pixdir): log.info("Creating dir {}".format(pixdir)) os.makedirs(pixdir) if "MOCKID" in metadata.dtype.names: #log.warning("Using MOCKID as TARGETID") targetid = np.array(metadata["MOCKID"]).astype(int) elif "ID" in metadata.dtype.names: log.warning("Using ID as TARGETID") targetid = np.array(metadata["ID"]).astype(int) else: log.warning("No TARGETID") targetid = None meta = {"HPXNSIDE": nside, "HPXPIXEL": healpix, "HPXNEST": hpxnest} if args.target_selection or args.mags: # today we write mags because that's what is in the fibermap mags = np.zeros((qso_flux.shape[0], 5)) for i, band in enumerate(bands): jj = (bbflux[band] > 0) mags[jj, i] = 22.5 - 2.5 * np.log10(bbflux[band][jj]) # AB magnitudes fibermap_columns = {"MAG": mags} else: fibermap_columns = None sim_spectra(qso_wave, qso_flux, args.program, obsconditions=obsconditions, spectra_filename=ofilename, sourcetype="qso", skyerr=args.skyerr, ra=metadata["RA"], dec=metadata["DEC"], targetid=targetid, meta=meta, seed=seed, fibermap_columns=fibermap_columns) if args.zbest: log.info("Read fibermap") fibermap = read_fibermap(ofilename) log.info("Writing a zbest file {}".format(zbest_filename)) columns = [('CHI2', 'f8'), ('COEFF', 'f8', (4, )), ('Z', 'f8'), ('ZERR', 'f8'), ('ZWARN', 'i8'), ('SPECTYPE', (str, 96)), ('SUBTYPE', (str, 16)), ('TARGETID', 'i8'), ('DELTACHI2', 'f8'), ('BRICKNAME', (str, 8))] zbest = Table(np.zeros(nqso, dtype=columns)) zbest["CHI2"][:] = 0. zbest["Z"] = metadata['Z'] zbest["ZERR"][:] = 0. zbest["ZWARN"][:] = 0 zbest["SPECTYPE"][:] = "QSO" zbest["SUBTYPE"][:] = "" zbest["TARGETID"] = fibermap["TARGETID"] zbest["DELTACHI2"][:] = 25. hzbest = pyfits.convenience.table_to_hdu(zbest) hzbest.name = "ZBEST" hfmap = pyfits.convenience.table_to_hdu(fibermap) hfmap.name = "FIBERMAP" hdulist = pyfits.HDUList([pyfits.PrimaryHDU(), hzbest, hfmap]) hdulist.writeto(zbest_filename, clobber=True) hdulist.close() # see if this helps with memory issue if args.dla: #This will change according to discussion log.info("Updating the spectra file to add DLA metadata {}".format( ofilename)) hdudla = pyfits.table_to_hdu(dla_meta) hdudla.name = "DLA_META" hdul = pyfits.open(ofilename, mode='update') hdul.append(hdudla) hdul.flush() hdul.close()
def simulate_one_healpix(ifilename,args,model,obsconditions,decam_and_wise_filters, bassmzls_and_wise_filters,footprint_healpix_weight, footprint_healpix_nside, bal=None,sfdmap=None,eboss=None) : log = get_logger() # open filename and extract basic HEALPix information pixel, nside, hpxnest = get_healpix_info(ifilename) # using global seed (could be None) get seed for this particular pixel global_seed = args.seed seed = get_pixel_seed(pixel, nside, global_seed) # use this seed to generate future random numbers np.random.seed(seed) # get output file (we will write there spectra for this HEALPix pixel) ofilename = get_spectra_filename(args,nside,pixel) # get directory name (we will also write there zbest file) pixdir = os.path.dirname(ofilename) # get filename for truth file truth_filename = get_truth_filename(args,pixdir,nside,pixel) # get filename for zbest file zbest_filename = get_zbest_filename(args,pixdir,nside,pixel) if not args.overwrite : # check whether output exists or not if args.zbest : if os.path.isfile(ofilename) and os.path.isfile(zbest_filename) : log.info("skip existing {} and {}".format(ofilename,zbest_filename)) return else : # only test spectra file if os.path.isfile(ofilename) : log.info("skip existing {}".format(ofilename)) return # create sub-directories if required if len(pixdir)>0 : if not os.path.isdir(pixdir) : log.info("Creating dir {}".format(pixdir)) os.makedirs(pixdir) log.info("Read skewers in {}, random seed = {}".format(ifilename,seed)) # Read transmission from files. It might include DLA information, and it # might add metal transmission as well (from the HDU file). log.info("Read transmission file {}".format(ifilename)) trans_wave, transmission, metadata, dla_info = read_lya_skewers(ifilename,read_dlas=(args.dla=='file'),add_metals=args.metals_from_file,add_lyb=args.add_LYB) ### Add Finger-of-God, before generate the continua log.info("Add FOG to redshift with sigma {} to quasar redshift".format(args.sigma_kms_fog)) DZ_FOG = args.sigma_kms_fog/c*(1.+metadata['Z'])*np.random.normal(0,1,metadata['Z'].size) metadata['Z'] += DZ_FOG ### Select quasar within a given redshift range w = (metadata['Z']>=args.zmin) & (metadata['Z']<=args.zmax) transmission = transmission[w] metadata = metadata[:][w] DZ_FOG = DZ_FOG[w] # option to make for BOSS+eBOSS if not eboss is None: if args.downsampling or args.desi_footprint: raise ValueError("eboss option can not be run with " +"desi_footprint or downsampling") # Get the redshift distribution from SDSS selection = sdss_subsample_redshift(metadata["RA"],metadata["DEC"],metadata['Z'],eboss['redshift']) log.info("Select QSOs in BOSS+eBOSS redshift distribution {} -> {}".format(metadata['Z'].size,selection.sum())) if selection.sum()==0: log.warning("No intersection with BOSS+eBOSS redshift distribution") return transmission = transmission[selection] metadata = metadata[:][selection] DZ_FOG = DZ_FOG[selection] # figure out the density of all quasars N_highz = metadata['Z'].size # area of healpix pixel, in degrees area_deg2 = healpy.pixelfunc.nside2pixarea(nside,degrees=True) input_highz_dens_deg2 = N_highz/area_deg2 selection = sdss_subsample(metadata["RA"], metadata["DEC"], input_highz_dens_deg2,eboss['footprint']) log.info("Select QSOs in BOSS+eBOSS footprint {} -> {}".format(transmission.shape[0],selection.size)) if selection.size == 0 : log.warning("No intersection with BOSS+eBOSS footprint") return transmission = transmission[selection] metadata = metadata[:][selection] DZ_FOG = DZ_FOG[selection] if args.desi_footprint : footprint_healpix = footprint.radec2pix(footprint_healpix_nside, metadata["RA"], metadata["DEC"]) selection = np.where(footprint_healpix_weight[footprint_healpix]>0.99)[0] log.info("Select QSOs in DESI footprint {} -> {}".format(transmission.shape[0],selection.size)) if selection.size == 0 : log.warning("No intersection with DESI footprint") return transmission = transmission[selection] metadata = metadata[:][selection] DZ_FOG = DZ_FOG[selection] nqso=transmission.shape[0] if args.downsampling is not None : if args.downsampling <= 0 or args.downsampling > 1 : log.error("Down sampling fraction={} must be between 0 and 1".format(args.downsampling)) raise ValueError("Down sampling fraction={} must be between 0 and 1".format(args.downsampling)) indices = np.where(np.random.uniform(size=nqso)<args.downsampling)[0] if indices.size == 0 : log.warning("Down sampling from {} to 0 (by chance I presume)".format(nqso)) return transmission = transmission[indices] metadata = metadata[:][indices] DZ_FOG = DZ_FOG[indices] nqso = transmission.shape[0] if args.nmax is not None : if args.nmax < nqso : log.info("Limit number of QSOs from {} to nmax={} (random subsample)".format(nqso,args.nmax)) # take a random subsample indices = np.random.choice(np.arange(nqso),args.nmax,replace=False) ##Use random.choice instead of random.uniform (rarely but it does cause a duplication of qsos) transmission = transmission[indices] metadata = metadata[:][indices] DZ_FOG = DZ_FOG[indices] nqso = args.nmax # In previous versions of the London mocks we needed to enforce F=1 for # z > z_qso here, but this is not needed anymore. Moreover, now we also # have metal absorption that implies F < 1 for z > z_qso #for ii in range(len(metadata)): # transmission[ii][trans_wave>lambda_RF_LYA*(metadata[ii]['Z']+1)]=1.0 # if requested, add DLA to the transmission skewers if args.dla is not None : # if adding random DLAs, we will need a new random generator if args.dla=='random': log.info('Adding DLAs randomly') random_state_just_for_dlas = np.random.RandomState(seed) elif args.dla=='file': log.info('Adding DLAs from transmission file') else: log.error("Wrong option for args.dla: "+args.dla) sys.exit(1) # if adding DLAs, the information will be printed here dla_filename=os.path.join(pixdir,"dla-{}-{}.fits".format(nside,pixel)) dla_NHI, dla_z, dla_qid,dla_id = [], [], [],[] # identify minimum Lya redshift in transmission files min_lya_z = np.min(trans_wave/lambda_RF_LYA - 1) # loop over quasars in pixel for ii in range(len(metadata)): # quasars with z < min_z will not have any DLA in spectrum if min_lya_z>metadata['Z'][ii]: continue # quasar ID idd=metadata['MOCKID'][ii] dlas=[] if args.dla=='file': for dla in dla_info[dla_info['MOCKID']==idd]: # Adding only DLAs with z < zqso if dla['Z_DLA_RSD']>=metadata['Z'][ii]: continue dlas.append(dict(z=dla['Z_DLA_RSD'],N=dla['N_HI_DLA'],dlaid=dla['DLAID'])) transmission_dla = dla_spec(trans_wave,dlas) elif args.dla=='random': dlas, transmission_dla = insert_dlas(trans_wave, metadata['Z'][ii], rstate=random_state_just_for_dlas) for idla in dlas: idla['dlaid']+=idd*1000 #Added to have unique DLA ids. Same format as DLAs from file. # multiply transmissions and store information for the DLA file if len(dlas)>0: transmission[ii] = transmission_dla * transmission[ii] dla_z += [idla['z'] for idla in dlas] dla_NHI += [idla['N'] for idla in dlas] dla_id += [idla['dlaid'] for idla in dlas] dla_qid += [idd]*len(dlas) log.info('Added {} DLAs'.format(len(dla_id))) # write file with DLA information if len(dla_id)>0: dla_meta=Table() dla_meta['NHI'] = dla_NHI dla_meta['Z_DLA'] = dla_z #This is Z_DLA_RSD in transmision. dla_meta['TARGETID']=dla_qid dla_meta['DLAID'] = dla_id hdu_dla = pyfits.convenience.table_to_hdu(dla_meta) hdu_dla.name="DLA_META" del(dla_meta) log.info("DLA metadata to be saved in {}".format(truth_filename)) else: hdu_dla=pyfits.PrimaryHDU() hdu_dla.name="DLA_META" # if requested, extend transmission skewers to cover full spectrum if args.target_selection or args.bbflux : wanted_min_wave = 3329. # needed to compute magnitudes for decam2014-r (one could have trimmed the transmission file ...) wanted_max_wave = 55501. # needed to compute magnitudes for wise2010-W2 if trans_wave[0]>wanted_min_wave : log.info("Increase wavelength range from {}:{} to {}:{} to compute magnitudes".format(int(trans_wave[0]),int(trans_wave[-1]),int(wanted_min_wave),int(trans_wave[-1]))) # pad with ones at short wavelength, we assume F = 1 for z <~ 1.7 # we don't need any wavelength resolution here new_trans_wave = np.append([wanted_min_wave,trans_wave[0]-0.01],trans_wave) new_transmission = np.ones((transmission.shape[0],new_trans_wave.size)) new_transmission[:,2:] = transmission trans_wave = new_trans_wave transmission = new_transmission if trans_wave[-1]<wanted_max_wave : log.info("Increase wavelength range from {}:{} to {}:{} to compute magnitudes".format(int(trans_wave[0]),int(trans_wave[-1]),int(trans_wave[0]),int(wanted_max_wave))) # pad with ones at long wavelength because we assume F = 1 coarse_dwave = 2. # we don't care about resolution, we just need a decent QSO spectrum, there is no IGM transmission in this range n = int((wanted_max_wave-trans_wave[-1])/coarse_dwave)+1 new_trans_wave = np.append(trans_wave,np.linspace(trans_wave[-1]+coarse_dwave,trans_wave[-1]+coarse_dwave*(n+1),n)) new_transmission = np.ones((transmission.shape[0],new_trans_wave.size)) new_transmission[:,:trans_wave.size] = transmission trans_wave = new_trans_wave transmission = new_transmission # whether to use QSO or SIMQSO to generate quasar continua. Simulate # spectra in the north vs south separately because they're on different # photometric systems. south = np.where( is_south(metadata['DEC']) )[0] north = np.where( ~is_south(metadata['DEC']) )[0] meta, qsometa = empty_metatable(nqso, objtype='QSO', simqso=not args.no_simqso) if args.no_simqso: log.info("Simulate {} QSOs with QSO templates".format(nqso)) tmp_qso_flux = np.zeros([nqso, len(model.eigenwave)], dtype='f4') tmp_qso_wave = np.zeros_like(tmp_qso_flux) else: log.info("Simulate {} QSOs with SIMQSO templates".format(nqso)) tmp_qso_flux = np.zeros([nqso, len(model.basewave)], dtype='f4') tmp_qso_wave = model.basewave for these, issouth in zip( (north, south), (False, True) ): # number of quasars in these nt = len(these) if nt<=0: continue if not eboss is None: # for eBOSS, generate only quasars with r<22 magrange = (17.0, 21.3) _tmp_qso_flux, _tmp_qso_wave, _meta, _qsometa \ = model.make_templates(nmodel=nt, redshift=metadata['Z'][these], magrange=magrange, lyaforest=False, nocolorcuts=True, noresample=True, seed=seed, south=issouth) else: _tmp_qso_flux, _tmp_qso_wave, _meta, _qsometa \ = model.make_templates(nmodel=nt, redshift=metadata['Z'][these], lyaforest=False, nocolorcuts=True, noresample=True, seed=seed, south=issouth) _meta['TARGETID'] = metadata['MOCKID'][these] _qsometa['TARGETID'] = metadata['MOCKID'][these] meta[these] = _meta qsometa[these] = _qsometa tmp_qso_flux[these, :] = _tmp_qso_flux if args.no_simqso: tmp_qso_wave[these, :] = _tmp_qso_wave log.info("Resample to transmission wavelength grid") qso_flux=np.zeros((tmp_qso_flux.shape[0],trans_wave.size)) if args.no_simqso: for q in range(tmp_qso_flux.shape[0]) : qso_flux[q]=np.interp(trans_wave,tmp_qso_wave[q],tmp_qso_flux[q]) else: for q in range(tmp_qso_flux.shape[0]) : qso_flux[q]=np.interp(trans_wave,tmp_qso_wave,tmp_qso_flux[q]) tmp_qso_flux = qso_flux tmp_qso_wave = trans_wave # if requested, add BAL features to the quasar continua if args.balprob: if args.balprob<=1. and args.balprob >0: log.info("Adding BALs with probability {}".format(args.balprob)) # save current random state rnd_state = np.random.get_state() tmp_qso_flux,meta_bal=bal.insert_bals(tmp_qso_wave,tmp_qso_flux, metadata['Z'], balprob=args.balprob,seed=seed) # restore random state to get the same random numbers later # as when we don't insert BALs np.random.set_state(rnd_state) meta_bal['TARGETID'] = metadata['MOCKID'] w = meta_bal['TEMPLATEID']!=-1 meta_bal = meta_bal[:][w] hdu_bal=pyfits.convenience.table_to_hdu(meta_bal); hdu_bal.name="BAL_META" del meta_bal else: balstr=str(args.balprob) log.error("BAL probability is not between 0 and 1 : "+balstr) sys.exit(1) # Multiply quasar continua by transmitted flux fraction # (at this point transmission file might include Ly-beta, metals and DLAs) log.info("Apply transmitted flux fraction") if not args.no_transmission: tmp_qso_flux = apply_lya_transmission(tmp_qso_wave,tmp_qso_flux, trans_wave,transmission) # if requested, compute metal transmission on the fly # (if not included already from the transmission file) if args.metals is not None: if args.metals_from_file : log.error('you cannot add metals twice') raise ValueError('you cannot add metals twice') if args.no_transmission: log.error('you cannot add metals if asking for no-transmission') raise ValueError('can not add metals if using no-transmission') lstMetals = '' for m in args.metals: lstMetals += m+', ' log.info("Apply metals: {}".format(lstMetals[:-2])) tmp_qso_flux = apply_metals_transmission(tmp_qso_wave,tmp_qso_flux, trans_wave,transmission,args.metals) # if requested, compute magnitudes and apply target selection. Need to do # this calculation separately for QSOs in the north vs south. bbflux=None if args.target_selection or args.bbflux : bands=['FLUX_G','FLUX_R','FLUX_Z', 'FLUX_W1', 'FLUX_W2'] bbflux=dict() bbflux['SOUTH'] = is_south(metadata['DEC']) for band in bands: bbflux[band] = np.zeros(nqso) # need to recompute the magnitudes to account for lya transmission log.info("Compute QSO magnitudes") for these, filters in zip( (~bbflux['SOUTH'], bbflux['SOUTH']), (bassmzls_and_wise_filters, decam_and_wise_filters) ): if np.count_nonzero(these) > 0: maggies = filters.get_ab_maggies(1e-17 * tmp_qso_flux[these, :], tmp_qso_wave) for band, filt in zip( bands, maggies.colnames ): bbflux[band][these] = np.ma.getdata(1e9 * maggies[filt]) # nanomaggies if args.target_selection : log.info("Apply target selection") isqso = np.ones(nqso, dtype=bool) for these, issouth in zip( (~bbflux['SOUTH'], bbflux['SOUTH']), (False, True) ): if np.count_nonzero(these) > 0: # optical cuts only if using QSO vs SIMQSO isqso[these] &= isQSO_colors(gflux=bbflux['FLUX_G'][these], rflux=bbflux['FLUX_R'][these], zflux=bbflux['FLUX_Z'][these], w1flux=bbflux['FLUX_W1'][these], w2flux=bbflux['FLUX_W2'][these], south=issouth, optical=args.no_simqso) log.info("Target selection: {}/{} QSOs selected".format(np.sum(isqso),nqso)) selection=np.where(isqso)[0] if selection.size==0 : return tmp_qso_flux = tmp_qso_flux[selection] metadata = metadata[:][selection] meta = meta[:][selection] qsometa = qsometa[:][selection] DZ_FOG = DZ_FOG[selection] for band in bands : bbflux[band] = bbflux[band][selection] bbflux['SOUTH']=bbflux['SOUTH'][selection] nqso = selection.size log.info("Resample to a linear wavelength grid (needed by DESI sim.)") # careful integration of bins, not just a simple interpolation qso_wave=np.linspace(args.wmin,args.wmax,int((args.wmax-args.wmin)/args.dwave)+1) qso_flux=np.zeros((tmp_qso_flux.shape[0],qso_wave.size)) for q in range(tmp_qso_flux.shape[0]) : qso_flux[q]=resample_flux(qso_wave,tmp_qso_wave,tmp_qso_flux[q]) log.info("Simulate DESI observation and write output file") if "MOCKID" in metadata.dtype.names : #log.warning("Using MOCKID as TARGETID") targetid=np.array(metadata["MOCKID"]).astype(int) elif "ID" in metadata.dtype.names : log.warning("Using ID as TARGETID") targetid=np.array(metadata["ID"]).astype(int) else : log.warning("No TARGETID") targetid=None specmeta={"HPXNSIDE":nside,"HPXPIXEL":pixel, "HPXNEST":hpxnest} if args.target_selection or args.bbflux : fibermap_columns = dict( FLUX_G = bbflux['FLUX_G'], FLUX_R = bbflux['FLUX_R'], FLUX_Z = bbflux['FLUX_Z'], FLUX_W1 = bbflux['FLUX_W1'], FLUX_W2 = bbflux['FLUX_W2'], ) photsys = np.full(len(bbflux['FLUX_G']), 'N', dtype='S1') photsys[bbflux['SOUTH']] = b'S' fibermap_columns['PHOTSYS'] = photsys else : fibermap_columns=None # Attenuate the spectra for extinction if not sfdmap is None: Rv=3.1 #set by default indx=np.arange(metadata['RA'].size) extinction =Rv*ext_odonnell(qso_wave) EBV = sfdmap.ebv(metadata['RA'],metadata['DEC'], scaling=1.0) qso_flux *=10**( -0.4 * EBV[indx, np.newaxis] * extinction) if fibermap_columns is not None: fibermap_columns['EBV']=EBV EBV0=0.0 EBV_med=np.median(EBV) Ag = 3.303 * (EBV_med - EBV0) exptime_fact=np.power(10.0, (2.0 * Ag / 2.5)) obsconditions['EXPTIME']*=exptime_fact log.info("Dust extinction added") log.info('exposure time adjusted to {}'.format(obsconditions['EXPTIME'])) sim_spectra(qso_wave,qso_flux, args.program, obsconditions=obsconditions,spectra_filename=ofilename, sourcetype="qso", skyerr=args.skyerr,ra=metadata["RA"],dec=metadata["DEC"],targetid=targetid, meta=specmeta,seed=seed,fibermap_columns=fibermap_columns,use_poisson=False) # use Poisson = False to get reproducible results. ### Keep input redshift Z_spec = metadata['Z'].copy() Z_input = metadata['Z'].copy()-DZ_FOG ### Add a shift to the redshift, simulating the systematic imprecision of redrock DZ_sys_shift = args.shift_kms_los/c*(1.+Z_input) log.info('Added a shift of {} km/s to the redshift'.format(args.shift_kms_los)) meta['REDSHIFT'] += DZ_sys_shift metadata['Z'] += DZ_sys_shift ### Add a shift to the redshift, simulating the statistic imprecision of redrock if args.gamma_kms_zfit: log.info("Added zfit error with gamma {} to zbest".format(args.gamma_kms_zfit)) DZ_stat_shift = mod_cauchy(loc=0,scale=args.gamma_kms_zfit,size=nqso,cut=3000)/c*(1.+Z_input) meta['REDSHIFT'] += DZ_stat_shift metadata['Z'] += DZ_stat_shift ## Write the truth file, including metadata for DLAs and BALs log.info('Writing a truth file {}'.format(truth_filename)) meta.rename_column('REDSHIFT','Z') meta.add_column(Column(Z_spec,name='TRUEZ')) meta.add_column(Column(Z_input,name='Z_INPUT')) meta.add_column(Column(DZ_FOG,name='DZ_FOG')) meta.add_column(Column(DZ_sys_shift,name='DZ_SYS')) if args.gamma_kms_zfit: meta.add_column(Column(DZ_stat_shift,name='DZ_STAT')) if 'Z_noRSD' in metadata.dtype.names: meta.add_column(Column(metadata['Z_noRSD'],name='Z_NORSD')) else: log.info('Z_noRSD field not present in transmission file. Z_NORSD not saved to truth file') #Save global seed and pixel seed to primary header hdr=pyfits.Header() hdr['GSEED']=global_seed hdr['PIXSEED']=seed hdu = pyfits.convenience.table_to_hdu(meta) hdu.header['EXTNAME'] = 'TRUTH' hduqso=pyfits.convenience.table_to_hdu(qsometa) hduqso.header['EXTNAME'] = 'QSO_META' hdulist=pyfits.HDUList([pyfits.PrimaryHDU(header=hdr),hdu,hduqso]) if args.dla: hdulist.append(hdu_dla) if args.balprob: hdulist.append(hdu_bal) hdulist.writeto(truth_filename, overwrite=True) hdulist.close() if args.zbest : log.info("Read fibermap") fibermap = read_fibermap(ofilename) log.info("Writing a zbest file {}".format(zbest_filename)) columns = [ ('CHI2', 'f8'), ('COEFF', 'f8' , (4,)), ('Z', 'f8'), ('ZERR', 'f8'), ('ZWARN', 'i8'), ('SPECTYPE', (str,96)), ('SUBTYPE', (str,16)), ('TARGETID', 'i8'), ('DELTACHI2', 'f8'), ('BRICKNAME', (str,8))] zbest = Table(np.zeros(nqso, dtype=columns)) zbest['CHI2'][:] = 0. zbest['Z'][:] = metadata['Z'] zbest['ZERR'][:] = 0. zbest['ZWARN'][:] = 0 zbest['SPECTYPE'][:] = 'QSO' zbest['SUBTYPE'][:] = '' zbest['TARGETID'][:] = metadata['MOCKID'] zbest['DELTACHI2'][:] = 25. hzbest = pyfits.convenience.table_to_hdu(zbest); hzbest.name='ZBEST' hfmap = pyfits.convenience.table_to_hdu(fibermap); hfmap.name='FIBERMAP' hdulist =pyfits.HDUList([pyfits.PrimaryHDU(),hzbest,hfmap]) hdulist.writeto(zbest_filename, overwrite=True) hdulist.close() # see if this helps with memory issue
def setup_pipeline(config): """ Given a configuration from QLF, this sets up a pipeline [pa,qa] and also returns a conversion dictionary from the configuration dictionary so that Pipeline steps (PA) can take them. This is required for runpipeline. """ import astropy.io.fits as fits import desispec.io.fibermap as fibIO import desispec.io.sky as skyIO import desispec.io.fiberflat as ffIO import desispec.fiberflat as ff import desispec.io.image as imIO import desispec.image as im import desispec.io.frame as frIO import desispec.frame as dframe from desispec.quicklook import procalgs from desispec.boxcar import do_boxcar qlog=qllogger.QLLogger("QuickLook",20) log=qlog.getlog() if config is None: return None log.info("Reading Configuration") if "RawImage" not in config: log.critical("Config is missing \"RawImage\" key.") sys.exit("Missing \"RawImage\" key.") inpname=config["RawImage"] if "FiberMap" not in config: log.critical("Config is missing \"FiberMap\" key.") sys.exit("Missing \"FiberMap\" key.") fibname=config["FiberMap"] proctype="Exposure" if "Camera" in config: camera=config["Camera"] if "DataType" in config: proctype=config["DataType"] debuglevel=20 if "DebugLevel" in config: debuglevel=config["DebugLevel"] log.setLevel(debuglevel) hbeat=QLHB.QLHeartbeat(log,config["Period"],config["Timeout"]) if config["Timeout"]> 200.0: log.warning("Heartbeat timeout exceeding 200.0 seconds") dumpintermediates=False if "DumpIntermediates" in config: dumpintermediates=config["DumpIntermediates"] biasimage=None #- This will be the converted dictionary key biasfile=None if "BiasImage" in config: biasfile=config["BiasImage"] darkimage=None darkfile=None if "DarkImage" in config: darkfile=config["DarkImage"] pixelflatfile=None pixflatimage=None if "PixelFlat" in config: pixelflatfile=config["PixelFlat"] fiberflatimagefile=None fiberflatimage=None if "FiberFlatImage" in config: fiberflatimagefile=config["FiberFlatImage"] arclampimagefile=None arclampimage=None if "ArcLampImage" in config: arclampimagefile=config["ArcLampImage"] fiberflatfile=None fiberflat=None if "FiberFlatFile" in config: if config["Flavor"] == 'arcs': pass else: fiberflatfile=config["FiberFlatFile"] skyfile=None skyimage=None if "SkyFile" in config: skyfile=config["SkyFile"] psf=None if config["Flavor"] == 'arcs': if not os.path.exists(os.path.join(os.environ['QL_SPEC_REDUX'],'calib2d','psf',config["Night"])): os.mkdir(os.path.join(os.environ['QL_SPEC_REDUX'],'calib2d','psf',config["Night"])) pass elif "PSFFile" in config: #from specter.psf import load_psf import desispec.psf psf=desispec.psf.PSF(config["PSFFile"]) #psf=load_psf(config["PSFFile"]) if "basePath" in config: basePath=config["basePath"] hbeat.start("Reading input file {}".format(inpname)) inp=fits.open(inpname) #- reading raw image directly from astropy.io.fits hbeat.start("Reading fiberMap file {}".format(fibname)) fibfile=fibIO.read_fibermap(fibname) fibhdr=fibfile.meta convdict={"FiberMap":fibfile} if psf is not None: convdict["PSFFile"]=psf if biasfile is not None: hbeat.start("Reading Bias Image {}".format(biasfile)) biasimage=imIO.read_image(biasfile) convdict["BiasImage"]=biasimage if darkfile is not None: hbeat.start("Reading Dark Image {}".format(darkfile)) darkimage=imIO.read_image(darkfile) convdict["DarkImage"]=darkimage if pixelflatfile: hbeat.start("Reading PixelFlat Image {}".format(pixelflatfile)) pixelflatimage=imIO.read_image(pixelflatfile) convdict["PixelFlat"]=pixelflatimage if fiberflatimagefile: hbeat.start("Reading FiberFlat Image {}".format(fiberflatimagefile)) fiberflatimage=imIO.read_image(fiberflatimagefile) convdict["FiberFlatImage"]=fiberflatimage if arclampimagefile: hbeat.start("Reading ArcLampImage {}".format(arclampimagefile)) arclampimage=imIO.read_image(arclampimagefile) convdict["ArcLampImage"]=arclampimage if fiberflatfile: hbeat.start("Reading FiberFlat {}".format(fiberflatfile)) fiberflat=ffIO.read_fiberflat(fiberflatfile) convdict["FiberFlatFile"]=fiberflat if skyfile: hbeat.start("Reading SkyModel file {}".format(skyfile)) skymodel=skyIO.read_sky(skyfile) convdict["SkyFile"]=skymodel if dumpintermediates: convdict["DumpIntermediates"]=dumpintermediates hbeat.stop("Finished reading all static files") img=inp convdict["rawimage"]=img pipeline=[] for step in config["PipeLine"]: pa=getobject(step["PA"],log) if len(pipeline) == 0: if not pa.is_compatible(type(img)): log.critical("Pipeline configuration is incorrect! check configuration {} {}".format(img,pa.is_compatible(img))) sys.exit("Wrong pipeline configuration") else: if not pa.is_compatible(pipeline[-1][0].get_output_type()): log.critical("Pipeline configuration is incorrect! check configuration") log.critical("Can't connect input of {} to output of {}. Incompatible types".format(pa.name,pipeline[-1][0].name)) sys.exit("Wrong pipeline configuration") qas=[] for q in step["QAs"]: qa=getobject(q,log) if not qa.is_compatible(pa.get_output_type()): log.warning("QA {} can not be used for output of {}. Skipping expecting {} got {} {}".format(qa.name,pa.name,qa.__inpType__,pa.get_output_type(),qa.is_compatible(pa.get_output_type()))) else: qas.append(qa) pipeline.append([pa,qas]) return pipeline,convdict
def simulate_one_healpix(ifilename,args,model,obsconditions,decam_and_wise_filters, bassmzls_and_wise_filters,footprint_healpix_weight, footprint_healpix_nside, bal=None,sfdmap=None,eboss=None) : log = get_logger() # open filename and extract basic HEALPix information pixel, nside, hpxnest = get_healpix_info(ifilename) # using global seed (could be None) get seed for this particular pixel global_seed = args.seed seed = get_pixel_seed(pixel, nside, global_seed) # use this seed to generate future random numbers np.random.seed(seed) # get output file (we will write there spectra for this HEALPix pixel) ofilename = get_spectra_filename(args,nside,pixel) # get directory name (we will also write there zbest file) pixdir = os.path.dirname(ofilename) # get filename for truth file truth_filename = get_truth_filename(args,pixdir,nside,pixel) # get filename for zbest file zbest_filename = get_zbest_filename(args,pixdir,nside,pixel) if not args.overwrite : # check whether output exists or not if args.zbest : if os.path.isfile(ofilename) and os.path.isfile(zbest_filename) : log.info("skip existing {} and {}".format(ofilename,zbest_filename)) return else : # only test spectra file if os.path.isfile(ofilename) : log.info("skip existing {}".format(ofilename)) return # create sub-directories if required if len(pixdir)>0 : if not os.path.isdir(pixdir) : log.info("Creating dir {}".format(pixdir)) os.makedirs(pixdir) log.info("Read skewers in {}, random seed = {}".format(ifilename,seed)) # Read transmission from files. It might include DLA information, and it # might add metal transmission as well (from the HDU file). log.info("Read transmission file {}".format(ifilename)) trans_wave, transmission, metadata, dla_info = read_lya_skewers(ifilename,read_dlas=(args.dla=='file'),add_metals=args.metals_from_file) ### Add Finger-of-God, before generate the continua log.info("Add FOG to redshift with sigma {} to quasar redshift".format(args.sigma_kms_fog)) DZ_FOG = args.sigma_kms_fog/c*(1.+metadata['Z'])*np.random.normal(0,1,metadata['Z'].size) metadata['Z'] += DZ_FOG ### Select quasar within a given redshift range w = (metadata['Z']>=args.zmin) & (metadata['Z']<=args.zmax) transmission = transmission[w] metadata = metadata[:][w] DZ_FOG = DZ_FOG[w] # option to make for BOSS+eBOSS if not eboss is None: if args.downsampling or args.desi_footprint: raise ValueError("eboss option can not be run with " +"desi_footprint or downsampling") # Get the redshift distribution from SDSS selection = sdss_subsample_redshift(metadata["RA"],metadata["DEC"],metadata['Z'],eboss['redshift']) log.info("Select QSOs in BOSS+eBOSS redshift distribution {} -> {}".format(metadata['Z'].size,selection.sum())) if selection.sum()==0: log.warning("No intersection with BOSS+eBOSS redshift distribution") return transmission = transmission[selection] metadata = metadata[:][selection] DZ_FOG = DZ_FOG[selection] # figure out the density of all quasars N_highz = metadata['Z'].size # area of healpix pixel, in degrees area_deg2 = healpy.pixelfunc.nside2pixarea(nside,degrees=True) input_highz_dens_deg2 = N_highz/area_deg2 selection = sdss_subsample(metadata["RA"], metadata["DEC"], input_highz_dens_deg2,eboss['footprint']) log.info("Select QSOs in BOSS+eBOSS footprint {} -> {}".format(transmission.shape[0],selection.size)) if selection.size == 0 : log.warning("No intersection with BOSS+eBOSS footprint") return transmission = transmission[selection] metadata = metadata[:][selection] DZ_FOG = DZ_FOG[selection] if args.desi_footprint : footprint_healpix = footprint.radec2pix(footprint_healpix_nside, metadata["RA"], metadata["DEC"]) selection = np.where(footprint_healpix_weight[footprint_healpix]>0.99)[0] log.info("Select QSOs in DESI footprint {} -> {}".format(transmission.shape[0],selection.size)) if selection.size == 0 : log.warning("No intersection with DESI footprint") return transmission = transmission[selection] metadata = metadata[:][selection] DZ_FOG = DZ_FOG[selection] nqso=transmission.shape[0] if args.downsampling is not None : if args.downsampling <= 0 or args.downsampling > 1 : log.error("Down sampling fraction={} must be between 0 and 1".format(args.downsampling)) raise ValueError("Down sampling fraction={} must be between 0 and 1".format(args.downsampling)) indices = np.where(np.random.uniform(size=nqso)<args.downsampling)[0] if indices.size == 0 : log.warning("Down sampling from {} to 0 (by chance I presume)".format(nqso)) return transmission = transmission[indices] metadata = metadata[:][indices] DZ_FOG = DZ_FOG[indices] nqso = transmission.shape[0] if args.nmax is not None : if args.nmax < nqso : log.info("Limit number of QSOs from {} to nmax={} (random subsample)".format(nqso,args.nmax)) # take a random subsample indices = (np.random.uniform(size=args.nmax)*nqso).astype(int) transmission = transmission[indices] metadata = metadata[:][indices] DZ_FOG = DZ_FOG[indices] nqso = args.nmax # In previous versions of the London mocks we needed to enforce F=1 for # z > z_qso here, but this is not needed anymore. Moreover, now we also # have metal absorption that implies F < 1 for z > z_qso #for ii in range(len(metadata)): # transmission[ii][trans_wave>lambda_RF_LYA*(metadata[ii]['Z']+1)]=1.0 # if requested, add DLA to the transmission skewers if args.dla is not None : # if adding random DLAs, we will need a new random generator if args.dla=='random': log.info('Adding DLAs randomly') random_state_just_for_dlas = np.random.RandomState(seed) elif args.dla=='file': log.info('Adding DLAs from transmission file') else: log.error("Wrong option for args.dla: "+args.dla) sys.exit(1) # if adding DLAs, the information will be printed here dla_filename=os.path.join(pixdir,"dla-{}-{}.fits".format(nside,pixel)) dla_NHI, dla_z, dla_qid,dla_id = [], [], [],[] # identify minimum Lya redshift in transmission files min_lya_z = np.min(trans_wave/lambda_RF_LYA - 1) # loop over quasars in pixel for ii in range(len(metadata)): # quasars with z < min_z will not have any DLA in spectrum if min_lya_z>metadata['Z'][ii]: continue # quasar ID idd=metadata['MOCKID'][ii] dlas=[] if args.dla=='file': for dla in dla_info[dla_info['MOCKID']==idd]: # Adding only DLAs with z < zqso if dla['Z_DLA_RSD']>=metadata['Z'][ii]: continue dlas.append(dict(z=dla['Z_DLA_RSD'],N=dla['N_HI_DLA'],dlaid=dla['DLAID'])) transmission_dla = dla_spec(trans_wave,dlas) elif args.dla=='random': dlas, transmission_dla = insert_dlas(trans_wave, metadata['Z'][ii], rstate=random_state_just_for_dlas) for idla in dlas: idla['dlaid']+=idd*1000 #Added to have unique DLA ids. Same format as DLAs from file. # multiply transmissions and store information for the DLA file if len(dlas)>0: transmission[ii] = transmission_dla * transmission[ii] dla_z += [idla['z'] for idla in dlas] dla_NHI += [idla['N'] for idla in dlas] dla_id += [idla['dlaid'] for idla in dlas] dla_qid += [idd]*len(dlas) log.info('Added {} DLAs'.format(len(dla_id))) # write file with DLA information if len(dla_id)>0: dla_meta=Table() dla_meta['NHI'] = dla_NHI dla_meta['Z_DLA'] = dla_z #This is Z_DLA_RSD in transmision. dla_meta['TARGETID']=dla_qid dla_meta['DLAID'] = dla_id hdu_dla = pyfits.convenience.table_to_hdu(dla_meta) hdu_dla.name="DLA_META" del(dla_meta) log.info("DLA metadata to be saved in {}".format(truth_filename)) else: hdu_dla=pyfits.PrimaryHDU() hdu_dla.name="DLA_META" # if requested, extend transmission skewers to cover full spectrum if args.target_selection or args.bbflux : wanted_min_wave = 3329. # needed to compute magnitudes for decam2014-r (one could have trimmed the transmission file ...) wanted_max_wave = 55501. # needed to compute magnitudes for wise2010-W2 if trans_wave[0]>wanted_min_wave : log.info("Increase wavelength range from {}:{} to {}:{} to compute magnitudes".format(int(trans_wave[0]),int(trans_wave[-1]),int(wanted_min_wave),int(trans_wave[-1]))) # pad with ones at short wavelength, we assume F = 1 for z <~ 1.7 # we don't need any wavelength resolution here new_trans_wave = np.append([wanted_min_wave,trans_wave[0]-0.01],trans_wave) new_transmission = np.ones((transmission.shape[0],new_trans_wave.size)) new_transmission[:,2:] = transmission trans_wave = new_trans_wave transmission = new_transmission if trans_wave[-1]<wanted_max_wave : log.info("Increase wavelength range from {}:{} to {}:{} to compute magnitudes".format(int(trans_wave[0]),int(trans_wave[-1]),int(trans_wave[0]),int(wanted_max_wave))) # pad with ones at long wavelength because we assume F = 1 coarse_dwave = 2. # we don't care about resolution, we just need a decent QSO spectrum, there is no IGM transmission in this range n = int((wanted_max_wave-trans_wave[-1])/coarse_dwave)+1 new_trans_wave = np.append(trans_wave,np.linspace(trans_wave[-1]+coarse_dwave,trans_wave[-1]+coarse_dwave*(n+1),n)) new_transmission = np.ones((transmission.shape[0],new_trans_wave.size)) new_transmission[:,:trans_wave.size] = transmission trans_wave = new_trans_wave transmission = new_transmission # whether to use QSO or SIMQSO to generate quasar continua. Simulate # spectra in the north vs south separately because they're on different # photometric systems. south = np.where( is_south(metadata['DEC']) )[0] north = np.where( ~is_south(metadata['DEC']) )[0] meta, qsometa = empty_metatable(nqso, objtype='QSO', simqso=not args.no_simqso) if args.no_simqso: log.info("Simulate {} QSOs with QSO templates".format(nqso)) tmp_qso_flux = np.zeros([nqso, len(model.eigenwave)], dtype='f4') tmp_qso_wave = np.zeros_like(tmp_qso_flux) else: log.info("Simulate {} QSOs with SIMQSO templates".format(nqso)) tmp_qso_flux = np.zeros([nqso, len(model.basewave)], dtype='f4') tmp_qso_wave = model.basewave for these, issouth in zip( (north, south), (False, True) ): # number of quasars in these nt = len(these) if nt<=0: continue if not eboss is None: # for eBOSS, generate only quasars with r<22 magrange = (17.0, 21.3) _tmp_qso_flux, _tmp_qso_wave, _meta, _qsometa \ = model.make_templates(nmodel=nt, redshift=metadata['Z'][these], magrange=magrange, lyaforest=False, nocolorcuts=True, noresample=True, seed=seed, south=issouth) else: _tmp_qso_flux, _tmp_qso_wave, _meta, _qsometa \ = model.make_templates(nmodel=nt, redshift=metadata['Z'][these], lyaforest=False, nocolorcuts=True, noresample=True, seed=seed, south=issouth) _meta['TARGETID'] = metadata['MOCKID'][these] _qsometa['TARGETID'] = metadata['MOCKID'][these] meta[these] = _meta qsometa[these] = _qsometa tmp_qso_flux[these, :] = _tmp_qso_flux if args.no_simqso: tmp_qso_wave[these, :] = _tmp_qso_wave log.info("Resample to transmission wavelength grid") qso_flux=np.zeros((tmp_qso_flux.shape[0],trans_wave.size)) if args.no_simqso: for q in range(tmp_qso_flux.shape[0]) : qso_flux[q]=np.interp(trans_wave,tmp_qso_wave[q],tmp_qso_flux[q]) else: for q in range(tmp_qso_flux.shape[0]) : qso_flux[q]=np.interp(trans_wave,tmp_qso_wave,tmp_qso_flux[q]) tmp_qso_flux = qso_flux tmp_qso_wave = trans_wave # if requested, add BAL features to the quasar continua if args.balprob: if args.balprob<=1. and args.balprob >0: log.info("Adding BALs with probability {}".format(args.balprob)) # save current random state rnd_state = np.random.get_state() tmp_qso_flux,meta_bal=bal.insert_bals(tmp_qso_wave,tmp_qso_flux, metadata['Z'], balprob=args.balprob,seed=seed) # restore random state to get the same random numbers later # as when we don't insert BALs np.random.set_state(rnd_state) meta_bal['TARGETID'] = metadata['MOCKID'] w = meta_bal['TEMPLATEID']!=-1 meta_bal = meta_bal[:][w] hdu_bal=pyfits.convenience.table_to_hdu(meta_bal); hdu_bal.name="BAL_META" del meta_bal else: balstr=str(args.balprob) log.error("BAL probability is not between 0 and 1 : "+balstr) sys.exit(1) # Multiply quasar continua by transmitted flux fraction # (at this point transmission file might include Ly-beta, metals and DLAs) log.info("Apply transmitted flux fraction") if not args.no_transmission: tmp_qso_flux = apply_lya_transmission(tmp_qso_wave,tmp_qso_flux, trans_wave,transmission) # if requested, compute metal transmission on the fly # (if not included already from the transmission file) if args.metals is not None: if args.metals_from_file: log.error('you cannot add metals twice') raise ValueError('you cannot add metals twice') if args.no_transmission: log.error('you cannot add metals if asking for no-transmission') raise ValueError('can not add metals if using no-transmission') lstMetals = '' for m in args.metals: lstMetals += m+', ' log.info("Apply metals: {}".format(lstMetals[:-2])) tmp_qso_flux = apply_metals_transmission(tmp_qso_wave,tmp_qso_flux, trans_wave,transmission,args.metals) # if requested, compute magnitudes and apply target selection. Need to do # this calculation separately for QSOs in the north vs south. bbflux=None if args.target_selection or args.bbflux : bands=['FLUX_G','FLUX_R','FLUX_Z', 'FLUX_W1', 'FLUX_W2'] bbflux=dict() bbflux['SOUTH'] = is_south(metadata['DEC']) for band in bands: bbflux[band] = np.zeros(nqso) # need to recompute the magnitudes to account for lya transmission log.info("Compute QSO magnitudes") for these, filters in zip( (~bbflux['SOUTH'], bbflux['SOUTH']), (bassmzls_and_wise_filters, decam_and_wise_filters) ): if np.count_nonzero(these) > 0: maggies = filters.get_ab_maggies(1e-17 * tmp_qso_flux[these, :], tmp_qso_wave) for band, filt in zip( bands, maggies.colnames ): bbflux[band][these] = np.ma.getdata(1e9 * maggies[filt]) # nanomaggies if args.target_selection : log.info("Apply target selection") isqso = np.ones(nqso, dtype=bool) for these, issouth in zip( (~bbflux['SOUTH'], bbflux['SOUTH']), (False, True) ): if np.count_nonzero(these) > 0: # optical cuts only if using QSO vs SIMQSO isqso[these] &= isQSO_colors(gflux=bbflux['FLUX_G'][these], rflux=bbflux['FLUX_R'][these], zflux=bbflux['FLUX_Z'][these], w1flux=bbflux['FLUX_W1'][these], w2flux=bbflux['FLUX_W2'][these], south=issouth, optical=args.no_simqso) log.info("Target selection: {}/{} QSOs selected".format(np.sum(isqso),nqso)) selection=np.where(isqso)[0] if selection.size==0 : return tmp_qso_flux = tmp_qso_flux[selection] metadata = metadata[:][selection] meta = meta[:][selection] qsometa = qsometa[:][selection] DZ_FOG = DZ_FOG[selection] for band in bands : bbflux[band] = bbflux[band][selection] nqso = selection.size log.info("Resample to a linear wavelength grid (needed by DESI sim.)") # careful integration of bins, not just a simple interpolation qso_wave=np.linspace(args.wmin,args.wmax,int((args.wmax-args.wmin)/args.dwave)+1) qso_flux=np.zeros((tmp_qso_flux.shape[0],qso_wave.size)) for q in range(tmp_qso_flux.shape[0]) : qso_flux[q]=resample_flux(qso_wave,tmp_qso_wave,tmp_qso_flux[q]) log.info("Simulate DESI observation and write output file") if "MOCKID" in metadata.dtype.names : #log.warning("Using MOCKID as TARGETID") targetid=np.array(metadata["MOCKID"]).astype(int) elif "ID" in metadata.dtype.names : log.warning("Using ID as TARGETID") targetid=np.array(metadata["ID"]).astype(int) else : log.warning("No TARGETID") targetid=None specmeta={"HPXNSIDE":nside,"HPXPIXEL":pixel, "HPXNEST":hpxnest} if args.target_selection or args.bbflux : fibermap_columns = dict( FLUX_G = bbflux['FLUX_G'], FLUX_R = bbflux['FLUX_R'], FLUX_Z = bbflux['FLUX_Z'], FLUX_W1 = bbflux['FLUX_W1'], FLUX_W2 = bbflux['FLUX_W2'], ) photsys = np.full(len(bbflux['FLUX_G']), 'N', dtype='S1') photsys[bbflux['SOUTH']] = b'S' fibermap_columns['PHOTSYS'] = photsys else : fibermap_columns=None # Attenuate the spectra for extinction if not sfdmap is None: Rv=3.1 #set by default indx=np.arange(metadata['RA'].size) extinction =Rv*ext_odonnell(qso_wave) EBV = sfdmap.ebv(metadata['RA'],metadata['DEC'], scaling=1.0) qso_flux *=10**( -0.4 * EBV[indx, np.newaxis] * extinction) if fibermap_columns is not None: fibermap_columns['EBV']=EBV EBV0=0.0 EBV_med=np.median(EBV) Ag = 3.303 * (EBV_med - EBV0) exptime_fact=np.power(10.0, (2.0 * Ag / 2.5)) obsconditions['EXPTIME']*=exptime_fact log.info("Dust extinction added") log.info('exposure time adjusted to {}'.format(obsconditions['EXPTIME'])) sim_spectra(qso_wave,qso_flux, args.program, obsconditions=obsconditions,spectra_filename=ofilename, sourcetype="qso", skyerr=args.skyerr,ra=metadata["RA"],dec=metadata["DEC"],targetid=targetid, meta=specmeta,seed=seed,fibermap_columns=fibermap_columns,use_poisson=False) # use Poisson = False to get reproducible results. ### Keep input redshift Z_spec = metadata['Z'].copy() Z_input = metadata['Z'].copy()-DZ_FOG ### Add a shift to the redshift, simulating the systematic imprecision of redrock DZ_sys_shift = args.shift_kms_los/c*(1.+Z_input) log.info('Added a shift of {} km/s to the redshift'.format(args.shift_kms_los)) meta['REDSHIFT'] += DZ_sys_shift metadata['Z'] += DZ_sys_shift ### Add a shift to the redshift, simulating the statistic imprecision of redrock if args.gamma_kms_zfit: log.info("Added zfit error with gamma {} to zbest".format(args.gamma_kms_zfit)) DZ_stat_shift = mod_cauchy(loc=0,scale=args.gamma_kms_zfit,size=nqso,cut=3000)/c*(1.+Z_input) meta['REDSHIFT'] += DZ_stat_shift metadata['Z'] += DZ_stat_shift ## Write the truth file, including metadata for DLAs and BALs log.info('Writing a truth file {}'.format(truth_filename)) meta.rename_column('REDSHIFT','Z') meta.add_column(Column(Z_spec,name='TRUEZ')) meta.add_column(Column(Z_input,name='Z_INPUT')) meta.add_column(Column(DZ_FOG,name='DZ_FOG')) meta.add_column(Column(DZ_sys_shift,name='DZ_SYS')) if args.gamma_kms_zfit: meta.add_column(Column(DZ_stat_shift,name='DZ_STAT')) if 'Z_noRSD' in metadata.dtype.names: meta.add_column(Column(metadata['Z_noRSD'],name='Z_NORSD')) else: log.info('Z_noRSD field not present in transmission file. Z_NORSD not saved to truth file') hdu = pyfits.convenience.table_to_hdu(meta) hdu.header['EXTNAME'] = 'TRUTH' hduqso=pyfits.convenience.table_to_hdu(qsometa) hduqso.header['EXTNAME'] = 'QSO_META' hdulist=pyfits.HDUList([pyfits.PrimaryHDU(),hdu,hduqso]) if args.dla: hdulist.append(hdu_dla) if args.balprob: hdulist.append(hdu_bal) hdulist.writeto(truth_filename, overwrite=True) hdulist.close() if args.zbest : log.info("Read fibermap") fibermap = read_fibermap(ofilename) log.info("Writing a zbest file {}".format(zbest_filename)) columns = [ ('CHI2', 'f8'), ('COEFF', 'f8' , (4,)), ('Z', 'f8'), ('ZERR', 'f8'), ('ZWARN', 'i8'), ('SPECTYPE', (str,96)), ('SUBTYPE', (str,16)), ('TARGETID', 'i8'), ('DELTACHI2', 'f8'), ('BRICKNAME', (str,8))] zbest = Table(np.zeros(nqso, dtype=columns)) zbest['CHI2'][:] = 0. zbest['Z'][:] = metadata['Z'] zbest['ZERR'][:] = 0. zbest['ZWARN'][:] = 0 zbest['SPECTYPE'][:] = 'QSO' zbest['SUBTYPE'][:] = '' zbest['TARGETID'][:] = metadata['MOCKID'] zbest['DELTACHI2'][:] = 25. hzbest = pyfits.convenience.table_to_hdu(zbest); hzbest.name='ZBEST' hfmap = pyfits.convenience.table_to_hdu(fibermap); hfmap.name='FIBERMAP' hdulist =pyfits.HDUList([pyfits.PrimaryHDU(),hzbest,hfmap]) hdulist.writeto(zbest_filename, overwrite=True) hdulist.close() # see if this helps with memory issue
if 'DESIMODEL' not in os.environ: raise RuntimeError('The environment variable DESIMODEL must be set.') DESIMODEL_DIR=os.environ['DESIMODEL'] # Look for Directory tree/ environment set up # Directory Tree is $DESI_SPECTRO_REDUX/$PRODNAME/exposures/NIGHT/EXPID/*.fits # Perhaps can be synced with desispec findfile? #But read fibermap file and extract the headers needed for Directory tree #read fibermapfile to get objecttype,NIGHT and EXPID.... if args.fiberfile: print "Reading fibermap file %s"%(args.fiberfile) tbdata,hdr=fibermap.read_fibermap(args.fiberfile) fiber_hdulist=pyfits.open(args.fiberfile) objtype=tbdata['OBJTYPE'].copy() #need to replace STD object types with STAR since quicksim expects star instead of std stdindx=np.where(objtype=='STD') # match STD with STAR objtype[stdindx]='STAR' NIGHT=hdr['NIGHT'] EXPID=hdr['EXPID'] else: print "Need Fibermap file" #----------DESI_SPECTRO_REDUX-------- DESI_SPECTRO_REDUX_DIR="./quickGen"
def simulate_one_healpix(ifilename, args, model, obsconditions, decam_and_wise_filters, footprint_healpix_weight, footprint_healpix_nside): log = get_logger() healpix = 0 nside = 0 vals = os.path.basename(ifilename).split(".")[0].split("-") if len(vals) < 3: log.error("Cannot guess nside and healpix from filename {}".format( ifilename)) raise ValueError( "Cannot guess nside and healpix from filename {}".format( ifilename)) try: healpix = int(vals[-1]) nside = int(vals[-2]) except ValueError: raise ValueError( "Cannot guess nside and healpix from filename {}".format( ifilename)) zbest_filename = None if args.outfile: ofilename = args.outfile else: ofilename = os.path.join( args.outdir, "{}/{}/spectra-{}-{}.fits".format(healpix // 100, healpix, nside, healpix)) pixdir = os.path.dirname(ofilename) if not args.overwrite: # check whether output exists or not if args.zbest: zbest_filename = os.path.join( pixdir, "zbest-{}-{}.fits".format(nside, healpix)) if os.path.isfile(ofilename) and os.path.isfile(zbest_filename): log.info("skip existing {} and {}".format( ofilename, zbest_filename)) return else: # only test spectra file if os.path.isfile(ofilename): log.info("skip existing {}".format(ofilename)) return log.info("Read skewers in {}".format(ifilename)) trans_wave, transmission, metadata = read_lya_skewers(ifilename) ok = np.where((metadata['Z'] >= args.zmin) & (metadata['Z'] <= args.zmax))[0] transmission = transmission[ok] metadata = metadata[:][ok] # set seed now in case we are downsampling np.random.seed(args.seed) # create quasars if args.desi_footprint: footprint_healpix = footprint.radec2pix(footprint_healpix_nside, metadata["RA"], metadata["DEC"]) selection = np.where( footprint_healpix_weight[footprint_healpix] > 0.99)[0] log.info("Select QSOs in DESI footprint {} -> {}".format( transmission.shape[0], selection.size)) if selection.size == 0: log.warning("No intersection with DESI footprint") return transmission = transmission[selection] metadata = metadata[:][selection] nqso = transmission.shape[0] if args.downsampling is not None: if args.downsampling <= 0 or args.downsampling > 1: log.error( "Down sampling fraction={} must be between 0 and 1".format( args.downsampling)) raise ValueError( "Down sampling fraction={} must be between 0 and 1".format( args.downsampling)) indices = np.where(np.random.uniform(size=nqso) < args.downsampling)[0] if indices.size == 0: log.warning( "Down sampling from {} to 0 (by chance I presume)".format( nqso)) return transmission = transmission[indices] metadata = metadata[:][indices] nqso = transmission.shape[0] if args.nmax is not None: if args.nmax < nqso: log.info( "Limit number of QSOs from {} to nmax={} (random subsample)". format(nqso, args.nmax)) # take a random subsample indices = (np.random.uniform(size=args.nmax) * nqso).astype(int) transmission = transmission[indices] metadata = metadata[:][indices] nqso = args.nmax log.info("Simulate {} QSOs".format(nqso)) tmp_qso_flux, tmp_qso_wave, meta = model.make_templates( nmodel=nqso, redshift=metadata['Z'], seed=args.seed, lyaforest=False, nocolorcuts=True, noresample=True) log.info("Resample to transmission wavelength grid") # because we don't want to alter the transmission field with resampling here qso_flux = np.zeros((tmp_qso_flux.shape[0], trans_wave.size)) for q in range(tmp_qso_flux.shape[0]): qso_flux[q] = np.interp(trans_wave, tmp_qso_wave, tmp_qso_flux[q]) tmp_qso_flux = qso_flux tmp_qso_wave = trans_wave log.info("Apply lya") tmp_qso_flux = apply_lya_transmission(tmp_qso_wave, tmp_qso_flux, trans_wave, transmission) if args.target_selection: log.info("Compute QSO magnitudes for target selection") maggies = decam_and_wise_filters.get_ab_maggies(1e-17 * tmp_qso_flux, tmp_qso_wave.copy(), mask_invalid=True) for band, filt in zip( ('FLUX_G', 'FLUX_R', 'FLUX_Z', 'FLUX_W1', 'FLUX_W2'), ('decam2014-g', 'decam2014-r', 'decam2014-z', 'wise2010-W1', 'wise2010-W2')): meta[band] = np.ma.getdata(1e9 * maggies[filt]) # nanomaggies isqso = isQSO_colors(gflux=meta['FLUX_G'], rflux=meta['FLUX_R'], zflux=meta['FLUX_Z'], w1flux=meta['FLUX_W1'], w2flux=meta['FLUX_W2']) log.info("Target selection: {}/{} QSOs selected".format( np.sum(isqso), nqso)) selection = np.where(isqso)[0] if selection.size == 0: return tmp_qso_flux = tmp_qso_flux[selection] metadata = metadata[:][selection] meta = meta[:][selection] nqso = selection.size log.info("Resample to a linear wavelength grid (needed by DESI sim.)") # we need a linear grid. for this resampling we take care of integrating in bins # we do not do a simple interpolation qso_wave = np.linspace(args.wmin, args.wmax, int((args.wmax - args.wmin) / args.dwave) + 1) qso_flux = np.zeros((tmp_qso_flux.shape[0], qso_wave.size)) for q in range(tmp_qso_flux.shape[0]): qso_flux[q] = resample_flux(qso_wave, tmp_qso_wave, tmp_qso_flux[q]) log.info("Simulate DESI observation and write output file") pixdir = os.path.dirname(ofilename) if not os.path.isdir(pixdir): log.info("Creating dir {}".format(pixdir)) os.makedirs(pixdir) if "MOCKID" in metadata.dtype.names: #log.warning("Using MOCKID as TARGETID") targetid = np.array(metadata["MOCKID"]).astype(int) elif "ID" in metadata.dtype.names: log.warning("Using ID as TARGETID") targetid = np.array(metadata["ID"]).astype(int) else: log.warning("No TARGETID") targetid = None sim_spectra(qso_wave, qso_flux, args.program, obsconditions=obsconditions, spectra_filename=ofilename, seed=args.seed, sourcetype="qso", skyerr=args.skyerr, ra=metadata["RA"], dec=metadata["DEC"], targetid=targetid) if args.zbest: log.info("Read fibermap") fibermap = read_fibermap(ofilename) log.info("Writing a zbest file {}".format(zbest_filename)) columns = [('CHI2', 'f8'), ('COEFF', 'f8', (4, )), ('Z', 'f8'), ('ZERR', 'f8'), ('ZWARN', 'i8'), ('SPECTYPE', (str, 96)), ('SUBTYPE', (str, 16)), ('TARGETID', 'i8'), ('DELTACHI2', 'f8'), ('BRICKNAME', (str, 8))] zbest = Table(np.zeros(nqso, dtype=columns)) zbest["CHI2"][:] = 0. zbest["Z"] = metadata['Z'] zbest["ZERR"][:] = 0. zbest["ZWARN"][:] = 0 zbest["SPECTYPE"][:] = "QSO" zbest["SUBTYPE"][:] = "" zbest["TARGETID"] = fibermap["TARGETID"] zbest["DELTACHI2"][:] = 25. hzbest = pyfits.convenience.table_to_hdu(zbest) hzbest.name = "ZBEST" hfmap = pyfits.convenience.table_to_hdu(fibermap) hfmap.name = "FIBERMAP" hdulist = pyfits.HDUList([pyfits.PrimaryHDU(), hzbest, hfmap]) hdulist.writeto(zbest_filename, clobber=True) hdulist.close() # see if this helps with memory issue