def runpipeline(pl, convdict, conf): """runs the quicklook pipeline as configured Args: pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding qas for that pa convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file but convdict["IMAGE"] is like desispec.image.Image object and so on. details in setup_pipeline method below for examples. conf: a configured dictionary, read from the configuration yaml file. e.g: conf=configdict=yaml.load(open('configfile.yaml','rb')) """ qlog = qllogger.QLLogger("QuickLook", 20) log = qlog.getlog() hb = QLHB.QLHeartbeat(log, conf["Period"], conf["Timeout"]) inp = convdict["rawimage"] paconf = conf["PipeLine"] qlog = qllogger.QLLogger("QuickLook", 0) log = qlog.getlog() for s, step in enumerate(pl): log.info("Starting to run step %s" % (paconf[s]["StepName"])) pa = step[0] pargs = mapkeywords(step[0].config["kwargs"], convdict) try: hb.start("Running %s" % (step[0].name)) inp = pa(inp, **pargs) except Exception as e: log.critical("Failed to run PA %s error was %s" % (step[0].name, e)) sys.exit("Failed to run PA %s" % (step[0].name)) qaresult = {} for qa in step[1]: try: qargs = mapkeywords(qa.config["kwargs"], convdict) hb.start("Running %s" % (qa.name)) res = qa(inp, **qargs) log.debug("%s %s" % (qa.name, inp)) qaresult[qa.name] = res except Exception as e: log.warning("Failed to run QA %s error was %s" % (qa.name, e)) if len(qaresult): yaml.dump(qaresult, open(paconf[s]["OutputFile"], "wb")) hb.stop("Step %s finished. Output is in %s " % (paconf[s]["StepName"], paconf[s]["OutputFile"])) else: hb.stop("Step %s finished." % (paconf[s]["StepName"])) hb.stop("Pipeline processing finished. Serializing result") return inp
def check_config(outconfig, singqa): """ Given the expanded config, check for all possible file existence etc.... """ if singqa is None: qlog = qllogger.QLLogger(name="QLConfig") log = qlog.getlog() log.info("Checking if all the necessary files exist.") if outconfig["Flavor"] == 'science': files = [ outconfig["RawImage"], outconfig["FiberMap"], outconfig["FiberFlatFile"] ] for thisfile in files: if not os.path.exists(thisfile): sys.exit("File does not exist: {}".format(thisfile)) else: log.info("File check: Okay: {}".format(thisfile)) elif outconfig["Flavor"] == "flat": files = [outconfig["RawImage"], outconfig["FiberMap"]] for thisfile in files: if not os.path.exists(thisfile): sys.exit("File does not exist: {}".format(thisfile)) else: log.info("File check: Okay: {}".format(thisfile)) log.info("All necessary files exist for {} configuration.".format( outconfig["Flavor"])) return
def __init__(self, name, inptype, config, logger=None): if logger is None: self.m_log = qllogger.QLLogger().getlog(name) else: self.m_log = logger self.__inpType__ = type(inptype) self.name = name self.config = config self.m_log.debug("initializing Monitoring alg %s" % name)
def __init__(self, name, inptype, outtype, config, logger=None): if logger is None: qll = qllogger.QLLogger() self.m_log = qll.getlog(name) else: self.m_log = logger self.__inpType__ = type(inptype) self.__outType__ = type(outtype) self.name = name self.config = config self.m_log.debug("initializing Monitoring alg {}".format(name))
def __init__(self,thislist=None,algorithms=None,flavor=None,mode=None): """ thislist: given list of PAs algorithms: Algorithm list coming from config file: e.g desispec/data/quicklook/qlconfig_dark.yaml flavor: only needed if new list is to be built. mode: online offline? """ self.flavor=flavor self.mode=mode self.thislist=thislist self.algorithms=algorithms self.palist=self._palist() self.qalist=self._qalist() qlog=qllogger.QLLogger(name="QLConfig") self.log=qlog.getlog()
def __init__(self, configfile, night, camera, expid, singqa, amps=True,rawdata_dir=None,specprod_dir=None, outdir=None,qlf=False): """ configfile: a configuration file for QL eg: desispec/data/quicklook/qlconfig_dark.yaml night: night for the data to process, eg.'20191015' camera: which camera to process eg 'r0' expid: exposure id for the image to be processed amps: for outputing amps level QA Note: rawdata_dir and specprod_dir: if not None, overrides the standard DESI convention """ #- load the config file and extract self.conf = yaml.load(open(configfile,"r")) self.night = night self.expid = expid self.camera = camera self.singqa = singqa self.amps = amps self.rawdata_dir = rawdata_dir self.specprod_dir = specprod_dir self.outdir = outdir self.dumpintermediates = self.conf["WriteIntermediatefiles"] self.writepixfile = self.conf["WritePixfile"] self.writeskymodelfile = self.conf["WriteSkyModelfile"] self.writestaticplots = self.conf["WriteStaticPlots"] self.usesigma = self.conf["UseResolution"] self.pipeline = self.conf["Pipeline"] self.algorithms = self.conf["Algorithms"] self._palist = Palist(self.pipeline,self.algorithms) self.pamodule = self._palist.pamodule self.qamodule = self._palist.qamodule if "BoxcarExtract" in self.algorithms.keys(): if "wavelength" in self.algorithms["BoxcarExtract"].keys(): self.wavelength = self.algorithms["BoxcarExtract"]["wavelength"][self.camera[0]] else: self.wavelength = None if "SkySub_QL" in self.algorithms.keys(): if "Calculate_SNR" in self.algorithms["SkySub_QL"]["QA"].keys(): if "Residual_Cut" in self.algorithms["SkySub_QL"]["QA"]["Calculate_SNR"].keys(): self.rescut = self.algorithms["SkySub_QL"]["QA"]["Calculate_SNR"]["Residual_Cut"] else: self.rescut = None if "Sigma_Cut" in self.algorithms["SkySub_QL"]["QA"]["Calculate_SNR"].keys(): self.sigmacut = self.algorithms["SkySub_QL"]["QA"]["Calculate_SNR"]["Sigma_Cut"] else: self.sigmacut = None self._qlf=qlf qlog=qllogger.QLLogger(name="QLConfig") self.log=qlog.getlog() self._qaRefKeys={"Bias_From_Overscan":"BIAS_AMP", "Get_RMS":"NOISE_AMP", "Count_Pixels":"LITFRAC_AMP", "Calc_XWSigma":"XWSIGMA", "CountSpectralBins":"NGOODFIB", "Sky_Peaks":"PEAKCOUNT", "Sky_Continuum":"SKYCONT", "Integrate_Spec":"DELTAMAG_TGT", "Sky_Residual":"MED_RESID", "Calculate_SNR":"FIDSNR_TGT"}
def mapkeywords(kw, kwmap): """ Maps the keyword in the configuration to the corresponding object returned by the desispec.io module. e.g Bias Image file is mapped to biasimage object... for the same keyword "BiasImage" """ newmap = {} qlog = qllogger.QLLogger("QuickLook", 20) log = qlog.getlog() for k, v in kw.iteritems(): if isinstance(v, basestring) and len(v) >= 3 and v[0:2] == "%%": if v[2:] in kwmap: newmap[k] = kwmap[v[2:]] else: log.warning("Can't find key %s in conversion map. Skipping" % (v[2:])) else: newmap[k] = v return newmap
def mapkeywords(kw,kwmap): """ Maps the keyword in the configuration to the corresponding object returned by the desispec.io module. e.g Bias Image file is mapped to biasimage object... for the same keyword "BiasImage" """ newmap={} qlog=qllogger.QLLogger("QuickLook",20) log=qlog.getlog() for k,v in kw.items(): if isinstance(v,str) and len(v)>=3 and v[0:2]=="%%": #- For direct configuration if v[2:] in kwmap: newmap[k]=kwmap[v[2:]] else: log.warning("Can't find key {} in conversion map. Skipping".format(v[2:])) if k in kwmap: #- for configs generated via desispec.quicklook.qlconfig newmap[k]=kwmap[k] else: newmap[k]=v return newmap
def ql_main(args=None): qlog = qllogger.QLLogger("QuickLook", 20) log = qlog.getlog() if args is None: args = parse() if args.config is not None: if args.rawdata_dir: rawdata_dir = args.rawdata_dir else: if 'QL_SPEC_DATA' not in os.environ: sys.exit( "must set ${} environment variable or provide rawdata_dir". format('QL_SPEC_DATA')) rawdata_dir = os.getenv('QL_SPEC_DATA') if args.specprod_dir: specprod_dir = args.specprod_dir else: if 'QL_SPEC_REDUX' not in os.environ: sys.exit( "must set ${} environment variable or provide specprod_dir" .format('QL_SPEC_REDUX')) specprod_dir = os.getenv('QL_SPEC_REDUX') log.info("Running Quicklook using configuration file {}".format( args.config)) if os.path.exists(args.config): if "yaml" in args.config: config = qlconfig.Config(args.config, args.night, args.camera, args.expid, rawdata_dir=rawdata_dir, specprod_dir=specprod_dir) configdict = config.expand_config() else: log.critical("Can't open config file {}".format(args.config)) sys.exit("Can't open config file") else: sys.exit("File does not exist: {}".format(args.config)) elif args.fullconfig is not None: #- This is mostly for development/debugging purpose log.info("Running Quicklook using full configuration file {}".format( args.fullconfig)) if os.path.exists(args.fullconfig): if "yaml" in args.fullconfig: configdict = yaml.load(open(args.fullconfig, "r")) else: log.critical("Can't open config file {}".format(args.config)) sys.exit("Can't open config file") else: sys.exit("File does not exist: {}".format(args.config)) else: sys.exit( "Must provide a valid config file. See desispec/data/quicklook for an example" ) #- save the expanded config to a file if args.save: if "yaml" in args.save: f = open(args.save, "w") yaml.dump(configdict, f) log.info("Output saved for this configuration to {}".format( args.save)) f.close() else: log.info( "Can save config to only yaml output. Put a yaml in the argument" ) pipeline, convdict = quicklook.setup_pipeline(configdict) res = quicklook.runpipeline(pipeline, convdict, configdict, mergeQA=args.mergeQA) inpname = configdict["RawImage"] night = configdict["Night"] camera = configdict["Camera"] expid = configdict["Expid"] if isinstance(res, image.Image): if configdict["OutputFile"]: finalname = configdict["OutputFile"] else: finalname = "image-{}-{:08d}.fits".format(camera, expid) log.critical( "No final outputname given. Writing to a image file {}".format( finalname)) imIO.write_image(finalname, res, meta=None) elif isinstance(res, frame.Frame): if configdict["Flavor"] == 'arcs': from desispec.io.meta import findfile finalname = "psfnight-{}.fits".format(camera) finalframe = findfile('frame', night=night, expid=expid, camera=camera) frIO.write_frame(finalframe, res, header=None) else: if configdict["OutputFile"]: finalname = configdict["OutputFile"] else: finalname = "frame-{}-{:08d}.fits".format(camera, expid) log.critical( "No final outputname given. Writing to a frame file {}". format(finalname)) frIO.write_frame(finalname, res, header=None) else: log.error( "Result of pipeline is an unknown type {}. Don't know how to write" .format(type(res))) sys.exit("Unknown pipeline result type {}.".format(type(res))) log.info("Pipeline completed. Final result is in {}".format(finalname))
def runpipeline(pl, convdict, conf, mergeQA=False): """ Runs the quicklook pipeline as configured Args: pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding qas for that pa convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file but convdict["IMAGE"] is like desispec.image.Image object and so on. details in setup_pipeline method below for examples. conf: a configured dictionary, read from the configuration yaml file. e.g: conf=configdict=yaml.load(open('configfile.yaml','rb')) mergedQA: if True, outputs the merged QA after the execution of pipeline. Perhaps, this should always be True, but leaving as option, until configuration and IO settles. """ qlog = qllogger.QLLogger() log = qlog.getlog() hb = QLHB.QLHeartbeat(log, conf["Period"], conf["Timeout"]) inp = convdict["rawimage"] singqa = conf["singleqa"] paconf = conf["PipeLine"] qlog = qllogger.QLLogger() log = qlog.getlog() passqadict = None #- pass this dict to QAs downstream schemaMerger = QL_QAMerger(conf['Night'], conf['Expid'], conf['Flavor'], conf['Camera'], conf['Program']) QAresults = [ ] #- merged QA list for the whole pipeline. This will be reorganized for databasing after the pipeline executes if singqa is None: for s, step in enumerate(pl): log.info("Starting to run step {}".format(paconf[s]["StepName"])) pa = step[0] pargs = mapkeywords(step[0].config["kwargs"], convdict) schemaStep = schemaMerger.addPipelineStep(paconf[s]["StepName"]) try: hb.start("Running {}".format(step[0].name)) oldinp = inp #- copy for QAs that need to see earlier input inp = pa(inp, **pargs) except Exception as e: log.critical("Failed to run PA {} error was {}".format( step[0].name, e), exc_info=True) sys.exit("Failed to run PA {}".format(step[0].name)) qaresult = {} for qa in step[1]: try: qargs = mapkeywords(qa.config["kwargs"], convdict) hb.start("Running {}".format(qa.name)) qargs[ "dict_countbins"] = passqadict #- pass this to all QA downstream if qa.name == "RESIDUAL" or qa.name == "Sky_Residual": res = qa(inp[0], inp[1], **qargs) else: if isinstance(inp, tuple): res = qa(inp[0], **qargs) else: res = qa(inp, **qargs) if qa.name == "COUNTBINS" or qa.name == "CountSpectralBins": #TODO -must run this QA for now. change this later. passqadict = res if "qafile" in qargs: qawriter.write_qa_ql(qargs["qafile"], res) log.debug("{} {}".format(qa.name, inp)) qaresult[qa.name] = res schemaStep.addParams(res['PARAMS']) schemaStep.addMetrics(res['METRICS']) except Exception as e: log.warning("Failed to run QA {}. Got Exception {}".format( qa.name, e), exc_info=True) if len(qaresult): if conf["DumpIntermediates"]: f = open(paconf[s]["OutputFile"], "w") f.write(yaml.dump(yamlify(qaresult))) hb.stop("Step {} finished. Output is in {} ".format( paconf[s]["StepName"], paconf[s]["OutputFile"])) else: hb.stop("Step {} finished.".format(paconf[s]["StepName"])) QAresults.append([pa.name, qaresult]) hb.stop("Pipeline processing finished. Serializing result") else: import numpy as np qa = None qas = [ 'Bias_From_Overscan', ['Get_RMS', 'Calc_XWSigma', 'Count_Pixels'], 'CountSpectralBins', ['Sky_Continuum', 'Sky_Peaks'], ['Sky_Residual', 'Integrate_Spec', 'Calculate_SNR'] ] for palg in range(len(qas)): if singqa in qas[palg]: pa = pl[palg][0] pac = paconf[palg] if singqa == 'Bias_From_Overscan' or singqa == 'CountSpectralBins': qa = pl[palg][1][0] else: for qalg in range(len(qas[palg])): if qas[palg][qalg] == singqa: qa = pl[palg][1][qalg] if qa is None: log.critical("Unknown input... Valid QAs are: {}".format(qas)) sys.exit() log.info("Starting to run step {}".format(pac["StepName"])) pargs = mapkeywords(pa.config["kwargs"], convdict) schemaStep = schemaMerger.addPipelineStep(pac["StepName"]) qaresult = {} try: qargs = mapkeywords(qa.config["kwargs"], convdict) hb.start("Running {}".format(qa.name)) if singqa == "Sky_Residual": res = qa(inp[0], inp[1], **qargs) else: if isinstance(inp, tuple): res = qa(inp[0], **qargs) else: res = qa(inp, **qargs) if singqa == "CountSpectralBins": passqadict = res if "qafile" in qargs: qawriter.write_qa_ql(qargs["qafile"], res) log.debug("{} {}".format(qa.name, inp)) schemaStep.addMetrics(res['METRICS']) except Exception as e: log.warning("Failed to run QA {}. Got Exception {}".format( qa.name, e), exc_info=True) if len(qaresult): if conf["DumpIntermediates"]: f = open(pac["OutputFile"], "w") f.write(yaml.dump(yamlify(qaresult))) log.info("{} finished".format(qa.name)) #- merge QAs for this pipeline execution if mergeQA is True: # from desispec.quicklook.util import merge_QAs # log.info("Merging all the QAs for this pipeline execution") # merge_QAs(QAresults,conf) log.debug("Dumping mergedQAs") from desispec.io import findfile ftype = 'ql_mergedQA_file' specprod_dir = os.environ[ 'QL_SPEC_REDUX'] if 'QL_SPEC_REDUX' in os.environ else "" if conf['Flavor'] == 'arcs': ftype = 'ql_mergedQAarc_file' destFile = findfile(ftype, night=conf['Night'], expid=conf['Expid'], camera=conf['Camera'], specprod_dir=specprod_dir) # this will overwrite the file. above function returns same name for different QL executions # results will be erased. schemaMerger.writeToFile(destFile) log.info("Wrote merged QA file {}".format(destFile)) schemaMerger.writeTojsonFile(destFile) log.info("Wrote merged QA file {}".format( destFile.split('.yaml')[0] + '.json')) if isinstance(inp, tuple): return inp[0] else: return inp
def __init__(self, configfile, night, camera, expid, singqa, amps=True, rawdata_dir=None, specprod_dir=None, outdir=None, qlf=False, psfid=None, flatid=None, templateid=None, templatenight=None, qlplots=False, store_res=None): """ configfile: a configuration file for QL eg: desispec/data/quicklook/qlconfig_dark.yaml night: night for the data to process, eg.'20191015' camera: which camera to process eg 'r0' expid: exposure id for the image to be processed amps: for outputing amps level QA Note: rawdata_dir and specprod_dir: if not None, overrides the standard DESI convention """ with open(configfile, 'r') as f: self.conf = yaml.safe_load(f) f.close() self.night = night self.expid = expid self.psfid = psfid self.flatid = flatid self.templateid = templateid self.templatenight = templatenight self.camera = camera self.singqa = singqa self.amps = amps self.rawdata_dir = rawdata_dir self.specprod_dir = specprod_dir self.outdir = outdir self.flavor = self.conf["Flavor"] #- Options to write out frame, fframe, preproc, and sky model files self.dumpintermediates = False self.writepreprocfile = self.conf["WritePreprocfile"] self.writeskymodelfile = False self.plotconf = None self.hardplots = False #- Load plotting configuration file if qlplots != 'noplots' and qlplots is not None: with open(qlplots, 'r') as pf: self.plotconf = yaml.safe_load(pf) pf.close() #- Use hard coded plotting algorithms elif qlplots is None: self.hardplots = True # Use --resolution to store full resolution informtion if store_res: self.usesigma = True else: self.usesigma = False self.pipeline = self.conf["Pipeline"] self.algorithms = self.conf["Algorithms"] self._palist = Palist(self.pipeline, self.algorithms) self.pamodule = self._palist.pamodule self.qamodule = self._palist.qamodule algokeys = self.algorithms.keys() # Extract mapping of scalar/refence key names for each QA qaRefKeys = {} for i in algokeys: for k in self.algorithms[i]["QA"].keys(): if k == "Check_HDUs": qaRefKeys[k] = "CHECKHDUS" qaparams = self.algorithms[i]["QA"][k]["PARAMS"] for par in qaparams.keys(): if "NORMAL_RANGE" in par: scalar = par.replace("_NORMAL_RANGE", "") qaRefKeys[k] = scalar # Special additional parameters to read in. self.wavelength = None for key in ["BoxcarExtract", "Extract_QP"]: if key in self.algorithms.keys(): if "wavelength" in self.algorithms[key].keys(): self.wavelength = self.algorithms[key]["wavelength"][ self.camera[0]] self._qlf = qlf qlog = qllogger.QLLogger(name="QLConfig") self.log = qlog.getlog() self._qaRefKeys = qaRefKeys
def setup_pipeline(config): """ Given a configuration from QLF, this sets up a pipeline [pa,qa] and also returns a conversion dictionary from the configuration dictionary so that Pipeline steps (PA) can take them. This is required for runpipeline. """ import astropy.io.fits as fits import desispec.io.fibermap as fibIO import desispec.io.sky as skyIO import desispec.io.fiberflat as ffIO import desispec.fiberflat as ff import desispec.io.image as imIO import desispec.image as im import desispec.io.frame as frIO import desispec.frame as dframe from desispec.quicklook import procalgs from desispec.boxcar import do_boxcar qlog=qllogger.QLLogger("QuickLook",20) log=qlog.getlog() if config is None: return None log.info("Reading Configuration") if "RawImage" not in config: log.critical("Config is missing \"RawImage\" key.") sys.exit("Missing \"RawImage\" key.") inpname=config["RawImage"] if "FiberMap" not in config: log.critical("Config is missing \"FiberMap\" key.") sys.exit("Missing \"FiberMap\" key.") fibname=config["FiberMap"] proctype="Exposure" if "Camera" in config: camera=config["Camera"] if "DataType" in config: proctype=config["DataType"] debuglevel=20 if "DebugLevel" in config: debuglevel=config["DebugLevel"] log.setLevel(debuglevel) hbeat=QLHB.QLHeartbeat(log,config["Period"],config["Timeout"]) if config["Timeout"]> 200.0: log.warning("Heartbeat timeout exceeding 200.0 seconds") dumpintermediates=False if "DumpIntermediates" in config: dumpintermediates=config["DumpIntermediates"] biasimage=None #- This will be the converted dictionary key biasfile=None if "BiasImage" in config: biasfile=config["BiasImage"] darkimage=None darkfile=None if "DarkImage" in config: darkfile=config["DarkImage"] pixelflatfile=None pixflatimage=None if "PixelFlat" in config: pixelflatfile=config["PixelFlat"] fiberflatimagefile=None fiberflatimage=None if "FiberFlatImage" in config: fiberflatimagefile=config["FiberFlatImage"] arclampimagefile=None arclampimage=None if "ArcLampImage" in config: arclampimagefile=config["ArcLampImage"] fiberflatfile=None fiberflat=None if "FiberFlatFile" in config: if config["Flavor"] == 'arcs': pass else: fiberflatfile=config["FiberFlatFile"] skyfile=None skyimage=None if "SkyFile" in config: skyfile=config["SkyFile"] psf=None if config["Flavor"] == 'arcs': if not os.path.exists(os.path.join(os.environ['QL_SPEC_REDUX'],'calib2d','psf',config["Night"])): os.mkdir(os.path.join(os.environ['QL_SPEC_REDUX'],'calib2d','psf',config["Night"])) pass elif "PSFFile" in config: #from specter.psf import load_psf import desispec.psf psf=desispec.psf.PSF(config["PSFFile"]) #psf=load_psf(config["PSFFile"]) if "basePath" in config: basePath=config["basePath"] hbeat.start("Reading input file {}".format(inpname)) inp=fits.open(inpname) #- reading raw image directly from astropy.io.fits hbeat.start("Reading fiberMap file {}".format(fibname)) fibfile=fibIO.read_fibermap(fibname) fibhdr=fibfile.meta convdict={"FiberMap":fibfile} if psf is not None: convdict["PSFFile"]=psf if biasfile is not None: hbeat.start("Reading Bias Image {}".format(biasfile)) biasimage=imIO.read_image(biasfile) convdict["BiasImage"]=biasimage if darkfile is not None: hbeat.start("Reading Dark Image {}".format(darkfile)) darkimage=imIO.read_image(darkfile) convdict["DarkImage"]=darkimage if pixelflatfile: hbeat.start("Reading PixelFlat Image {}".format(pixelflatfile)) pixelflatimage=imIO.read_image(pixelflatfile) convdict["PixelFlat"]=pixelflatimage if fiberflatimagefile: hbeat.start("Reading FiberFlat Image {}".format(fiberflatimagefile)) fiberflatimage=imIO.read_image(fiberflatimagefile) convdict["FiberFlatImage"]=fiberflatimage if arclampimagefile: hbeat.start("Reading ArcLampImage {}".format(arclampimagefile)) arclampimage=imIO.read_image(arclampimagefile) convdict["ArcLampImage"]=arclampimage if fiberflatfile: hbeat.start("Reading FiberFlat {}".format(fiberflatfile)) fiberflat=ffIO.read_fiberflat(fiberflatfile) convdict["FiberFlatFile"]=fiberflat if skyfile: hbeat.start("Reading SkyModel file {}".format(skyfile)) skymodel=skyIO.read_sky(skyfile) convdict["SkyFile"]=skymodel if dumpintermediates: convdict["DumpIntermediates"]=dumpintermediates hbeat.stop("Finished reading all static files") img=inp convdict["rawimage"]=img pipeline=[] for step in config["PipeLine"]: pa=getobject(step["PA"],log) if len(pipeline) == 0: if not pa.is_compatible(type(img)): log.critical("Pipeline configuration is incorrect! check configuration {} {}".format(img,pa.is_compatible(img))) sys.exit("Wrong pipeline configuration") else: if not pa.is_compatible(pipeline[-1][0].get_output_type()): log.critical("Pipeline configuration is incorrect! check configuration") log.critical("Can't connect input of {} to output of {}. Incompatible types".format(pa.name,pipeline[-1][0].name)) sys.exit("Wrong pipeline configuration") qas=[] for q in step["QAs"]: qa=getobject(q,log) if not qa.is_compatible(pa.get_output_type()): log.warning("QA {} can not be used for output of {}. Skipping expecting {} got {} {}".format(qa.name,pa.name,qa.__inpType__,pa.get_output_type(),qa.is_compatible(pa.get_output_type()))) else: qas.append(qa) pipeline.append([pa,qas]) return pipeline,convdict
def runpipeline(pl,convdict,conf,mergeQA=False): """ Runs the quicklook pipeline as configured Args: pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding qas for that pa convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file but convdict["IMAGE"] is like desispec.image.Image object and so on. details in setup_pipeline method below for examples. conf: a configured dictionary, read from the configuration yaml file. e.g: conf=configdict=yaml.load(open('configfile.yaml','rb')) mergedQA: if True, outputs the merged QA after the execution of pipeline. Perhaps, this should always be True, but leaving as option, until configuration and IO settles. """ qlog=qllogger.QLLogger("QuickLook",20) log=qlog.getlog() hb=QLHB.QLHeartbeat(log,conf["Period"],conf["Timeout"]) inp=convdict["rawimage"] paconf=conf["PipeLine"] qlog=qllogger.QLLogger("QuickLook",0) log=qlog.getlog() passqadict=None #- pass this dict to QAs downstream QAresults=[] #- merged QA list for the whole pipeline. This will be reorganized for databasing after the pipeline executes for s,step in enumerate(pl): log.info("Starting to run step {}".format(paconf[s]["StepName"])) pa=step[0] pargs=mapkeywords(step[0].config["kwargs"],convdict) try: hb.start("Running {}".format(step[0].name)) oldinp=inp #- copy for QAs that need to see earlier input inp=pa(inp,**pargs) except Exception as e: log.critical("Failed to run PA {} error was {}".format(step[0].name,e)) sys.exit("Failed to run PA {}".format(step[0].name)) qaresult={} for qa in step[1]: try: qargs=mapkeywords(qa.config["kwargs"],convdict) hb.start("Running {}".format(qa.name)) qargs["dict_countbins"]=passqadict #- pass this to all QA downstream if qa.name=="RESIDUAL" or qa.name=="Sky_Residual": res=qa(inp[0],inp[1],**qargs) else: if isinstance(inp,tuple): res=qa(inp[0],**qargs) else: res=qa(inp,**qargs) if qa.name=="COUNTBINS" or qa.name=="CountSpectralBins": #TODO -must run this QA for now. change this later. passqadict=res log.debug("{} {}".format(qa.name,inp)) qaresult[qa.name]=res except Exception as e: log.warning("Failed to run QA {} error was {}".format(qa.name,e)) if len(qaresult): if conf["DumpIntermediates"]: f = open(paconf[s]["OutputFile"],"w") f.write(yaml.dump(yamlify(qaresult))) hb.stop("Step {} finished. Output is in {} ".format(paconf[s]["StepName"],paconf[s]["OutputFile"])) else: hb.stop("Step {} finished.".format(paconf[s]["StepName"])) QAresults.append([pa.name,qaresult]) hb.stop("Pipeline processing finished. Serializing result") #- merge QAs for this pipeline execution if mergeQA is True: from desispec.quicklook.util import merge_QAs log.info("Merging all the QAs for this pipeline execution") merge_QAs(QAresults) if isinstance(inp,tuple): return inp[0] else: return inp
def testconfig(outfilename="qlconfig.yaml"): """ Make a test Config file, should be provided by the QL framework Below the %% variables are replaced by actual object when the respective algorithm is executed. """ qlog=qllogger.QLLogger("QuickLook",20) log=qlog.getlog() url=None #- QA output will be posted to QLF if set true conf={'BiasImage':os.environ['BIASIMAGE'],# path to bias image 'DarkImage':os.environ['DARKIMAGE'],# path to dark image 'DataType':'Exposure',# type of input ['Exposure','Arc','Dark'] 'DebugLevel':20, # debug level 'Period':5.0, # Heartbeat Period (Secs) 'Timeout': 120.0, # Heartbeat Timeout (Secs) 'DumpIntermediates':False, # whether to dump output of each step 'FiberFlatFile':os.environ['FIBERFLATFILE'], # path to fiber flat field file 'FiberFlatImage':os.environ['FIBERFLATIMAGE'], # for psf calibration 'ArcLampImage':os.environ['ARCLAMPIMAGE'], # for psf calibration 'SkyFile':os.environ['SKYFILE'], # path to Sky file 'FiberMap':os.environ['FIBERMAP'],# path to fiber map 'RawImage':os.environ['PIXIMAGE'],#path to input image 'PixelFlat':os.environ['PIXELFLAT'], #path to pixel flat image 'PSFFile':os.environ['PSFFILE'], # for boxcar this can be bootcalib psf or specter psf file #'PSFFile_sp':os.environ['PSFFILE_sp'], # .../desimodel/data/specpsf/psf-r.fits (for running 2d extraction) 'basePath':os.environ['DESIMODEL'], 'OutputFile':'lastframe_QL-r0-00000004.fits', # output file from last pipeline step. Need to output intermediate steps? Most likely after boxcar extraction? 'PipeLine':[{'PA':{"ModuleName":"desispec.quicklook.procalgs", "ClassName":"BiasSubtraction", "Name":"Bias Subtraction", "kwargs":{"BiasImage":"%%BiasImage"} }, 'QAs':[{"ModuleName":"desispec.qa.qa_quicklook", "ClassName":"Get_RMS", "Name":"Get RMS", "kwargs":{}, }, {"ModuleName":"desispec.qa.qa_quicklook", "ClassName":"Count_Pixels", "Name":"Count Pixels", "kwargs":{'Width':3.} } ], "StepName":"Preprocessing-Bias Subtraction", "OutputFile":"QA_biassubtraction.yaml" }, {'PA':{"ModuleName":"desispec.quicklook.procalgs", "ClassName":"DarkSubtraction", "Name":"Dark Subtraction", "kwargs":{"DarkImage":"%%DarkImage"} }, 'QAs':[{"ModuleName":"desispec.qa.qa_quicklook", "ClassName":"Get_RMS", "Name":"Get RMS", "kwargs":{}, }, {"ModuleName":"desispec.qa.qa_quicklook", "ClassName":"Count_Pixels", "Name":"Count Pixels", "kwargs":{'Width':3.}, } ], "StepName":"Preprocessing-Dark Subtraction", "OutputFile":"QA_darksubtraction.yaml" }, {'PA':{"ModuleName":"desispec.quicklook.procalgs", "ClassName":"PixelFlattening", "Name":"Pixel Flattening", "kwargs":{"PixelFlat":"%%PixelFlat"} }, 'QAs':[{"ModuleName":"desispec.qa.qa_quicklook", "ClassName":"Get_RMS", "Name":"Get RMS", "kwargs":{}, }, {"ModuleName":"desispec.qa.qa_quicklook", "ClassName":"Count_Pixels", "Name":"Count Pixels", "kwargs":{'Width':3.}, } ], "StepName":"Preprocessing-Pixel Flattening", "OutputFile":"QA_pixelflattening.yaml" }, #{'PA':{"ModuleName":"desispec.quicklook.procalgs", # "ClassName":"BoxcarExtraction", # "Name":"Boxcar Extraction", # "kwargs":{"PSFFile":"%%PSFFile", # "BoxWidth":2.5, # "DeltaW":0.5, # "Nspec":500 # } # }, # 'QAs':[], # "StepName":"Boxcar Extration", # "OutputFile":"QA_boxcarextraction.yaml" # }, {'PA':{"ModuleName":"desispec.quicklook.procalgs", "ClassName":"Extraction_2d", "Name":"2D Extraction", "kwargs":{"PSFFile_sp":"/home/govinda/Desi/desimodel/data/specpsf/psf-r.fits", "Nspec":10, "Wavelength": "5630,7740,0.5", "FiberMap":"%%FiberMap" #need this for qa_skysub downstream as well. } }, 'QAs':[{"ModuleName":"desispec.qa.qa_quicklook", "ClassName":"CountSpectralBins", "Name":"Count Bins above n", "kwargs":{'thresh':100, 'camera':"r0", 'expid':"%08d"%2, 'url':url } } ], "StepName":"2D Extraction", "OutputFile":"qa-extract-r0-00000002.yaml" }, {'PA':{"ModuleName":"desispec.quicklook.procalgs", "ClassName": "ApplyFiberFlat", "Name": "Apply Fiberflat", "kwargs":{"FiberFlatFile":"%%FiberFlatFile" } }, 'QAs':[], "StepName":"Apply Fiberflat", "Outputfile":"apply_fiberflat_QA.yaml" }, {'PA':{"ModuleName":"desispec.quicklook.procalgs", "ClassName":"SubtractSky", "Name": "Sky Subtraction", "kwargs":{"SkyFile":"%%SkyFile" } }, 'QAs':[{"ModuleName":"desispec.qa.qa_quicklook", "ClassName":"Calculate_SNR", "Name":"Calculate Signal-to-Noise ratio", "kwargs":{'SkyFile':"%%SkyFile", 'camera':"r0", 'expid':"%08d"%2, 'url':url } } ], "StepName": "Sky Subtraction", "OutputFile":"qa-r0-00000002.yaml" } ] } if "yaml" in outfilename: f=open(outfilename,"w") yaml.dump(conf,f) f.close() else: log.warning("Only yaml defined. Use yaml format in the output config file") sys.exit(0)
def runpipeline(pl, convdict, conf): """ Runs the quicklook pipeline as configured Args: pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding qas for that pa convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file but convdict["IMAGE"] is like desispec.image.Image object and so on. details in setup_pipeline method below for examples. conf: a configured dictionary, read from the configuration yaml file. e.g: conf=configdict=yaml.load(open('configfile.yaml','rb')) """ qlog = qllogger.QLLogger() log = qlog.getlog() hb = QLHB.QLHeartbeat(log, conf["Period"], conf["Timeout"]) inp = convdict["rawimage"] singqa = conf["singleqa"] paconf = conf["PipeLine"] qlog = qllogger.QLLogger() log = qlog.getlog() passqadict = None #- pass this dict to QAs downstream schemaMerger = QL_QAMerger(conf['Night'], conf['Expid'], conf['Flavor'], conf['Camera'], conf['Program'], convdict) QAresults = [] if singqa is None: for s, step in enumerate(pl): log.info("Starting to run step {}".format(paconf[s]["StepName"])) pa = step[0] pargs = mapkeywords(step[0].config["kwargs"], convdict) schemaStep = schemaMerger.addPipelineStep(paconf[s]["StepName"]) try: hb.start("Running {}".format(step[0].name)) oldinp = inp #- copy for QAs that need to see earlier input inp = pa(inp, **pargs) if step[0].name == 'Initialize': schemaStep.addMetrics(inp[1]) except Exception as e: log.critical("Failed to run PA {} error was {}".format( step[0].name, e), exc_info=True) sys.exit("Failed to run PA {}".format(step[0].name)) qaresult = {} for qa in step[1]: try: qargs = mapkeywords(qa.config["kwargs"], convdict) hb.start("Running {}".format(qa.name)) qargs[ "dict_countbins"] = passqadict #- pass this to all QA downstream if qa.name == "RESIDUAL" or qa.name == "Sky_Residual": res = qa(inp[0], inp[1], **qargs) else: if isinstance(inp, tuple): res = qa(inp[0], **qargs) else: res = qa(inp, **qargs) if qa.name == "COUNTBINS" or qa.name == "CountSpectralBins": passqadict = res if "qafile" in qargs: qawriter.write_qa_ql(qargs["qafile"], res) log.debug("{} {}".format(qa.name, inp)) qaresult[qa.name] = res schemaStep.addParams(res['PARAMS']) schemaStep.addMetrics(res['METRICS']) except Exception as e: log.warning("Failed to run QA {}. Got Exception {}".format( qa.name, e), exc_info=True) hb.stop("Step {} finished.".format(paconf[s]["StepName"])) QAresults.append([pa.name, qaresult]) hb.stop("Pipeline processing finished. Serializing result") else: import numpy as np qa = None qas = [[], [ 'Bias_From_Overscan', 'Get_RMS', 'Count_Pixels', 'Calc_XWSigma' ], 'Trace_Shifts', 'CountSpectralBins', ['Sky_Continuum', 'Sky_Peaks'], ['Calculate_SNR'], ['Sky_Rband', 'Integrate_Spec']] singleqaperpa = [ 'Bias_From_Overscan', 'Check_HDUs', 'Trace_Shifts', 'CountSpectralBins' ] for palg in range(len(qas)): if singqa in qas[palg]: pa = pl[palg][0] pac = paconf[palg] if singqa in singleqaperpa: qa = pl[palg][1][0] else: for qalg in range(len(qas[palg])): if qas[palg][qalg] == singqa: qa = pl[palg][1][qalg] if qa is None: log.critical("Unknown input QA... Valid QAs are: {}".format(qas)) sys.exit() log.info("Starting to run step {}".format(pac["StepName"])) pargs = mapkeywords(pa.config["kwargs"], convdict) schemaStep = schemaMerger.addPipelineStep(pac["StepName"]) qaresult = {} try: qargs = mapkeywords(qa.config["kwargs"], convdict) hb.start("Running {}".format(qa.name)) if singqa == "Sky_Residual": res = qa(inp[0], inp[1], **qargs) else: if isinstance(inp, tuple): res = qa(inp[0], **qargs) else: res = qa(inp, **qargs) if singqa == "CountSpectralBins": passqadict = res if "qafile" in qargs: qawriter.write_qa_ql(qargs["qafile"], res) log.debug("{} {}".format(qa.name, inp)) schemaStep.addMetrics(res['METRICS']) except Exception as e: log.warning("Failed to run QA {}. Got Exception {}".format( qa.name, e), exc_info=True) if len(qaresult): if conf["DumpIntermediates"]: f = open(pac["OutputFile"], "w") f.write(yaml.dump(yamlify(qaresult))) log.info("{} finished".format(qa.name)) #- merge QAs for this pipeline execution #- RS: don't write merged file if running single QA if singqa is None: log.debug("Dumping mergedQAs") from desispec.io import findfile specprod_dir = os.environ[ 'QL_SPEC_REDUX'] if 'QL_SPEC_REDUX' in os.environ else "" destFile = findfile('ql_mergedQA_file', night=conf['Night'], expid=conf['Expid'], camera=conf['Camera'], specprod_dir=specprod_dir) schemaMerger.writeTojsonFile(destFile) log.info("Wrote merged QA file {}".format(destFile)) if isinstance(inp, tuple): return inp[0] else: return inp
import tempfile import numpy as np import os from desispec.qa import qalib from desispec.qa import qa_quicklook as QA from pkg_resources import resource_filename import desispec.sky from desispec.preproc import _parse_sec_keyword from specter.psf import load_psf import astropy.io.fits as fits from desispec.quicklook import qllogger import desispec.io import desispec.image from desitarget.targetmask import desi_mask qlog=qllogger.QLLogger("QuickLook",0) log=qlog.getlog() def xy2hdr(xyslice): ''' convert 2D slice into IRAF style [a:b,c:d] hdr value e.g. xyslice2hdr(np.s_[0:10, 5:20]) -> '[6:20,1:10]' ''' yy, xx = xyslice value = '[{}:{},{}:{}]'.format(xx.start+1, xx.stop, yy.start+1, yy.stop) return value #- 2D gaussian function to model sky peaks def gaussian2D(x,y,amp,xmu,ymu,xsigma,ysigma): x,y = np.meshgrid(x,y)
def ql_main(args=None): qlog = qllogger.QLLogger("QuickLook", 20) log = qlog.getlog() if args is None: args = parse() if args.dotest is not None: quicklook.testconfig(args.dotest) if args.config is not None: if os.path.exists(args.config): if "yaml" in args.config: configdict = yaml.load(open(args.config, 'rb')) else: log.critical("Can't open config file %s" % (args.config)) sys.exit("Can't open config file") else: log.warning( "No config file given. Trying to create config from other options") PAs = qlconfig.Palist(args.flavor) config = qlconfig.Make_Config(args.night, args.flavor, args.expid, args.camera, PAs, psfboot=args.psfboot, rawdata_dir=args.rawdata_dir, specprod_dir=args.specprod_dir, fiberflat=args.fiberflat, qlf=args.qlf) configdict = qlconfig.build_config(config) #- save this config to a file if args.save: if "yaml" in args.save: yaml.dump(configdict, open(args.save, "wb")) log.info("Output saved for this configuration to %s " % args.save) else: log.info( "Can save config to only yaml output. Put a yaml in the argument" ) pipeline, convdict = quicklook.setup_pipeline(configdict) res = quicklook.runpipeline(pipeline, convdict, configdict) inpname = configdict["RawImage"] camera = configdict["Camera"] chan, spectrograph, expid = quicklook.get_chan_spec_exp( inpname, camera=camera) #- may be other ways to get it as well if isinstance(res, image.Image): if configdict["OutputFile"]: finalname = configdict["OutputFile"] else: finalname = "image-%s%d-%08d.fits" % (chan, spectrograph, expid) imIO.write_image(finalname, res, meta=None) elif isinstance(res, frame.Frame): if configdict["OutputFile"]: finalname = configdict["OutputFile"] else: finalname = "frame-%s%d-%08d.fits" % (chan, spectrograph, expid) frIO.write_frame(finalname, res, header=None) else: log.error( "Result of pipeline is in unkown type %s. Don't know how to write" % (type(res))) sys.exit("Unknown pipeline result type %s." % (type(res))) log.info("Pipeline completed. Final result is in %s" % finalname)
def runpipeline(pl, convdict, conf): """runs the quicklook pipeline as configured Args: pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding qas for that pa convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file but convdict["IMAGE"] is like desispec.image.Image object and so on. details in setup_pipeline method below for examples. conf: a configured dictionary, read from the configuration yaml file. e.g: conf=configdict=yaml.load(open('configfile.yaml','rb')) """ qlog = qllogger.QLLogger("QuickLook", 20) log = qlog.getlog() hb = QLHB.QLHeartbeat(log, conf["Period"], conf["Timeout"]) inp = convdict["rawimage"] paconf = conf["PipeLine"] qlog = qllogger.QLLogger("QuickLook", 0) log = qlog.getlog() passqadict = None #- pass this dict to QAs downstream for s, step in enumerate(pl): log.info("Starting to run step %s" % (paconf[s]["StepName"])) pa = step[0] pargs = mapkeywords(step[0].config["kwargs"], convdict) try: hb.start("Running %s" % (step[0].name)) oldinp = inp #- copy for QAs that need to see earlier input inp = pa(inp, **pargs) except Exception as e: log.critical("Failed to run PA %s error was %s" % (step[0].name, e)) sys.exit("Failed to run PA %s" % (step[0].name)) qaresult = {} for qa in step[1]: try: qargs = mapkeywords(qa.config["kwargs"], convdict) hb.start("Running %s" % (qa.name)) qargs[ "dict_countbins"] = passqadict #- pass this to all QA downstream if qa.name == "RESIDUAL" or qa.name == "Sky_Residual": res = qa(oldinp, inp[1], **qargs) else: if isinstance(inp, tuple): res = qa(inp[0], **qargs) else: res = qa(inp, **qargs) if qa.name == "COUNTBINS" or qa.name == "CountSpectralBins": #TODO -must run this QA for now. change this later. passqadict = res log.debug("%s %s" % (qa.name, inp)) qaresult[qa.name] = res except Exception as e: log.warning("Failed to run QA %s error was %s" % (qa.name, e)) if len(qaresult): #- TODO - This dump of QAs for each PA should be reorganised. Dumping everything now. yaml.dump(qaresult, open(paconf[s]["OutputFile"], "wb")) hb.stop("Step %s finished. Output is in %s " % (paconf[s]["StepName"], paconf[s]["OutputFile"])) else: hb.stop("Step %s finished." % (paconf[s]["StepName"])) hb.stop("Pipeline processing finished. Serializing result") if isinstance(inp, tuple): return inp[0] else: return inp
def ql_main(args=None): from desispec.quicklook import quicklook, qllogger, qlconfig import desispec.image as image import desispec.frame as frame import desispec.io.frame as frIO import desispec.io.image as imIO if args is None: args = parse() qlog = qllogger.QLLogger(name="QuickLook", loglevel=args.loglvl) log = qlog.getlog() # Sami # quiet down DESI logs. We don't want DESI_LOGGER to print messages unless they are important # initalize singleton with WARNING level quietDesiLogger(args.loglvl + 10) if args.config is not None: if args.rawdata_dir: rawdata_dir = args.rawdata_dir else: if 'QL_SPEC_DATA' not in os.environ: sys.exit( "must set ${} environment variable or provide rawdata_dir". format('QL_SPEC_DATA')) rawdata_dir = os.getenv('QL_SPEC_DATA') if args.specprod_dir: specprod_dir = args.specprod_dir else: if 'QL_SPEC_REDUX' not in os.environ: sys.exit( "must set ${} environment variable or provide specprod_dir" .format('QL_SPEC_REDUX')) specprod_dir = os.getenv('QL_SPEC_REDUX') log.debug("Running Quicklook using configuration file {}".format( args.config)) if os.path.exists(args.config): if "yaml" in args.config: config = qlconfig.Config(args.config, args.night, args.camera, args.expid, args.singqa, rawdata_dir=rawdata_dir, specprod_dir=specprod_dir) configdict = config.expand_config() else: log.critical("Can't open config file {}".format(args.config)) sys.exit("Can't open config file") else: sys.exit("File does not exist: {}".format(args.config)) elif args.fullconfig is not None: #- This is mostly for development/debugging purpose log.debug("Running Quicklook using full configuration file {}".format( args.fullconfig)) if os.path.exists(args.fullconfig): if "yaml" in args.fullconfig: configdict = yaml.load(open(args.fullconfig, "r")) else: log.critical("Can't open config file {}".format(args.config)) sys.exit("Can't open config file") else: sys.exit("File does not exist: {}".format(args.config)) else: sys.exit( "Must provide a valid config file. See desispec/data/quicklook for an example" ) #- save the expanded config to a file if args.save: if "yaml" in args.save: f = open(args.save, "w") yaml.dump(configdict, f) log.info("Output saved for this configuration to {}".format( args.save)) f.close() else: log.warning( "Can save config to only yaml output. Put a yaml in the argument" ) pipeline, convdict = quicklook.setup_pipeline(configdict) res = quicklook.runpipeline(pipeline, convdict, configdict, mergeQA=args.mergeQA) inpname = configdict["RawImage"] night = configdict["Night"] camera = configdict["Camera"] expid = configdict["Expid"] if configdict["OutputFile"] is None: log.warning( "Output filename is None and has a object of {}. SKIPPING FINAL OUTPUT" .format(type(res))) return if isinstance(res, image.Image): if configdict["OutputFile"]: finalname = configdict["OutputFile"] else: finalname = "image-{}-{:08d}.fits".format(camera, expid) log.critical( "No final outputname given. Writing to a image file {}".format( finalname)) imIO.write_image(finalname, res, meta=None) elif isinstance(res, frame.Frame): if configdict["OutputFile"]: finalname = configdict["OutputFile"] else: finalname = "frame-{}-{:08d}.fits".format(camera, expid) log.critical( "No final outputname given. Writing to a frame file {}".format( finalname)) frIO.write_frame(finalname, res, header=None) elif configdict["Flavor"] == 'arcs': if configdict["OutputFile"]: finalname = configdict["OutputFile"] else: finalname = "psfnight-{}.fits".format(camera) elif configdict["Flavor"] == 'flat': if configdict["OutputFile"]: finalname = configdict["OutputFile"] else: finalname = "fiberflat-{}-{:08d}.fits".format(camera, expid) else: if args.singqa: sys.exit() else: log.error( "Result of pipeline is an unknown type {}. Don't know how to write" .format(type(res))) sys.exit("Unknown pipeline result type {}.".format(type(res))) log.info("Pipeline completed. Final result is in {}".format(finalname))
def ql_main(args=None): from desispec.util import set_backend _matplotlib_backend = None set_backend() from desispec.quicklook import quicklook, qllogger, qlconfig if args is None: args = parse() qlog = qllogger.QLLogger(name="QuickLook", loglevel=args.loglvl) log = qlog.getlog() # quiet down DESI logs. We don't want DESI_LOGGER to print messages unless they are important # initalize singleton with WARNING level quietDesiLogger(args.loglvl + 10) if args.config is not None: #RS: have command line arguments for finding files via old datamodel psfid = None if args.psfid: psfid = args.psfid flatid = None if args.flatid: flatid = args.flatid templateid = None if args.templateid: templateid = args.templateid templatenight = None if args.templatenight: templatenight = args.templatenight if args.rawdata_dir: rawdata_dir = args.rawdata_dir else: if 'QL_SPEC_DATA' not in os.environ: sys.exit( "must set ${} environment variable or provide rawdata_dir". format('QL_SPEC_DATA')) rawdata_dir = os.getenv('QL_SPEC_DATA') if args.specprod_dir: specprod_dir = args.specprod_dir else: if 'QL_SPEC_REDUX' not in os.environ: sys.exit( "must set ${} environment variable or provide specprod_dir" .format('QL_SPEC_REDUX')) specprod_dir = os.getenv('QL_SPEC_REDUX') log.debug("Running Quicklook using configuration file {}".format( args.config)) if os.path.exists(args.config): if "yaml" in args.config: config = qlconfig.Config(args.config, args.night, args.camera, args.expid, args.singqa, rawdata_dir=rawdata_dir, specprod_dir=specprod_dir, psfid=psfid, flatid=flatid, templateid=templateid, templatenight=templatenight, qlplots=args.qlplots, store_res=args.resolution) configdict = config.expand_config() else: log.critical("Can't open config file {}".format(args.config)) sys.exit("Can't open config file") else: sys.exit("File does not exist: {}".format(args.config)) else: sys.exit( "Must provide a valid config file. See desispec/data/quicklook for an example" ) pipeline, convdict = quicklook.setup_pipeline(configdict) res = quicklook.runpipeline(pipeline, convdict, configdict) log.info("QuickLook Pipeline completed")