def test_source_competence_rrc(): rrc_test = RRC() rrc_test.n_classifiers_ = 1 rrc_test.dsel_scores_ = np.array([[[0.3, 0.6, 0.1], [1.0 / 3, 1.0 / 3, 1.0 / 3], [0.5, 0.2, 0.3], [0.5, 0.2, 0.3]]]).reshape(4, 1, 3) rrc_test.DSEL_target_ = [1, 0, 0, 1] rrc_test.n_classes_ = 3 rrc_test.n_samples_ = 4 C_src = rrc_test.source_competence() expected = np.array([[0.7849], [0.3328], [0.6428], [0.1194]]) assert np.allclose(C_src, expected, atol=0.01)
def test_source_competence_rrc(): pool_classifiers = [ create_base_classifier(return_value=1, return_prob=1.0) ] rrc_test = RRC(pool_classifiers=pool_classifiers) rrc_test.n_classifiers_ = len(pool_classifiers) rrc_test.dsel_scores_ = np.array( [[[0.3, 0.6, 0.1], [1.0 / 3, 1.0 / 3, 1.0 / 3], [0.5, 0.2, 0.3], [0.5, 0.2, 0.3]]]).reshape(4, 1, 3) # 4 samples, 1 classifier and 3 classes rrc_test.DSEL_target_ = [1, 0, 0, 1] rrc_test.n_classes_ = 3 rrc_test.n_samples_ = 4 C_src = rrc_test.source_competence() expected = np.array([[0.7849], [0.3328], [0.6428], [0.1194]]) assert np.allclose(C_src, expected, atol=0.01)