コード例 #1
0
def test_integration_and_representation():

    for ffmt in D.available_float_fmt():
        D.set_float_fmt(ffmt)

        print("Testing {} float format".format(D.float_fmt()))

        de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]])

        @de.rhs_prettifier("""[vx, -x+t]""")
        def rhs(t, state, k, **kwargs):
            return de_mat @ state + D.array([0.0, t])

        def analytic_soln(t, initial_conditions):
            c1 = initial_conditions[0]
            c2 = initial_conditions[1] - 1

            return D.stack([
                c2 * D.sin(D.to_float(D.asarray(t))) +
                c1 * D.cos(D.to_float(D.asarray(t))) + D.asarray(t),
                c2 * D.cos(D.to_float(D.asarray(t))) -
                c1 * D.sin(D.to_float(D.asarray(t))) + 1
            ])

        def kbinterrupt_cb(ode_sys):
            if ode_sys[-1][0] > D.pi:
                raise KeyboardInterrupt("Test Interruption and Catching")

        y_init = D.array([1., 0.])

        a = de.OdeSystem(rhs,
                         y0=y_init,
                         dense_output=True,
                         t=(0, 2 * D.pi),
                         dt=0.01,
                         rtol=D.epsilon()**0.5,
                         atol=D.epsilon()**0.5,
                         constants=dict(k=1.0))

        a.integrate()

        try:
            print(str(a))
            print(repr(a))
            assert (D.max(D.abs(a.sol(a.t[0]) - y_init)) <=
                    8 * D.epsilon()**0.5)
            assert (D.max(
                D.abs(a.sol(a.t[-1]) - analytic_soln(a.t[-1], y_init))) <=
                    8 * D.epsilon()**0.5)
            assert (D.max(D.abs(a.sol(a.t).T - analytic_soln(a.t, y_init))) <=
                    8 * D.epsilon()**0.5)
        except:
            raise
コード例 #2
0
def test_matrix_inv():
    A = D.array([
        [-1.0, 3 / 2],
        [1.0, -1.0],
    ], dtype=D.float64)
    Ainv = D.matrix_inv(A)
    assert (D.max(D.abs(D.to_float(Ainv @ A - D.eye(2)))) <= 8 * D.epsilon())
コード例 #3
0
def test_float_formats_typical_shape(ffmt, integrator,
                                     use_richardson_extrapolation, device):
    if use_richardson_extrapolation and integrator.__implicit__:
        pytest.skip(
            "Richardson Extrapolation is too slow with implicit methods")
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(False)  # Enable if a test fails

        device = torch.device(device)

    print("Testing {} float format".format(D.float_fmt()))

    from .common import set_up_basic_system

    de_mat, rhs, analytic_soln, y_init, dt, _ = set_up_basic_system(
        integrator, hook_jacobian=True)

    y_init = D.array([1., 0.])

    if D.backend() == 'torch':
        y_init = y_init.to(device)

    a = de.OdeSystem(rhs,
                     y0=y_init,
                     dense_output=False,
                     t=(0, D.pi / 4),
                     dt=D.pi / 64,
                     rtol=D.epsilon()**0.5,
                     atol=D.epsilon()**0.5)

    method = integrator
    method_tolerance = a.atol * 10 + D.epsilon()
    if use_richardson_extrapolation:
        method = de.integrators.generate_richardson_integrator(method)
        method_tolerance = method_tolerance * 5

    with de.utilities.BlockTimer(section_label="Integrator Tests") as sttimer:
        a.set_method(method)
        print("Testing {} with dt = {:.4e}".format(a.integrator, a.dt))

        a.integrate(eta=True)

        print("Average step-size:",
              D.mean(D.abs(D.array(a.t[1:]) - D.array(a.t[:-1]))))
        max_diff = D.max(D.abs(analytic_soln(a.t[-1], y_init) - a.y[-1]))
        if a.integrator.adaptive:
            assert max_diff <= method_tolerance, "{} Failed with max_diff from analytical solution = {}".format(
                a.integrator, max_diff)
        if a.integrator.__implicit__:
            assert rhs.analytic_jacobian_called and a.njev > 0, "Analytic jacobian was called as part of integration"
        a.reset()
    print("")

    print("{} backend test passed successfully!".format(D.backend()))
コード例 #4
0
def test_integration_and_representation():
    for ffmt in D.available_float_fmt():
        D.set_float_fmt(ffmt)

        print("Testing {} float format".format(D.float_fmt()))

        de_mat = D.array([[0.0, 1.0],[-1.0, 0.0]])

        @de.rhs_prettifier("""[vx, -x+t]""")
        def rhs(t, state, k, **kwargs):
            return de_mat @ state + D.array([0.0, t])

        def analytic_soln(t, initial_conditions):
            c1 = initial_conditions[0]
            c2 = initial_conditions[1] - 1
            
            return D.stack([
                c2 * D.sin(D.to_float(D.asarray(t))) + c1 * D.cos(D.to_float(D.asarray(t))) + D.asarray(t),
                c2 * D.cos(D.to_float(D.asarray(t))) - c1 * D.sin(D.to_float(D.asarray(t))) + 1
            ])

        y_init = D.array([1., 0.])

        a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, 2*D.pi), dt=0.01, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5, constants=dict(k=1.0))
        
        assert(a.integration_status() == "Integration has not been run.")
        
        a.integrate()
        
        assert(a.integration_status() == "Integration completed successfully.")

        try:
            print(str(a))
            print(repr(a))
            assert(D.max(D.abs(a.sol(a.t[0]) - y_init)) <= 8*D.epsilon()**0.5)
            assert(D.max(D.abs(a.sol(a.t[-1]) - analytic_soln(a.t[-1], y_init))) <= 8*D.epsilon()**0.5)
            assert(D.max(D.abs(a.sol(a.t).T - analytic_soln(a.t, y_init))) <= 8*D.epsilon()**0.5)
        except:
            raise
            
        for i in a:
            assert(D.max(D.abs(i.y - analytic_soln(i.t, y_init))) <= 8*D.epsilon()**0.5)
            
        assert(len(a.y) == len(a))
        assert(len(a.t) == len(a))
コード例 #5
0
def test_matrix_inv_bigger():
    for diag_size in range(2, 101):
        np.random.seed(15)
        for trial in range(3):
            A = np.random.normal(size=(diag_size, diag_size))
            while np.abs(np.linalg.det(D.to_float(A))) <= 1e-5:
                A = np.random.normal(size=(diag_size, diag_size), std=250.0)
            A = D.array(D.cast_to_float_fmt(A))
            Ainv = D.matrix_inv(A)
            assert (
                D.max(D.abs(D.to_float(Ainv @ A - D.eye(diag_size)))) <=
                4 * D.epsilon()**0.5
            ), "Matrix inversion failed for diagonal with size: " + str(
                diag_size)
コード例 #6
0
def test_integration_and_representation(ffmt):
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    print("Testing {} float format".format(D.float_fmt()))

    from . import common

    (de_mat, rhs, analytic_soln, y_init, dt, a) = common.set_up_basic_system()

    assert (a.integration_status == "Integration has not been run.")

    a.integrate()

    assert (a.integration_status == "Integration completed successfully.")

    print(str(a))
    print(repr(a))
    assert (D.max(D.abs(a.sol(a.t[0]) - y_init)) <= 8 * D.epsilon()**0.5)
    assert (D.max(D.abs(a.sol(a.t[-1]) - analytic_soln(a.t[-1], y_init))) <=
            8 * D.epsilon()**0.5)
    assert (D.max(D.abs(a.sol(a.t).T - analytic_soln(a.t, y_init))) <=
            8 * D.epsilon()**0.5)

    for i in a:
        assert (D.max(D.abs(i.y - analytic_soln(i.t, y_init))) <=
                8 * D.epsilon()**0.5)

    assert (len(a.y) == len(a))
    assert (len(a.t) == len(a))
コード例 #7
0
ファイル: test_optimizer.py プロジェクト: izzortsi/desolver
def test_brentsrootvec(ffmt, tol):
    print("Set dtype to:", ffmt)
    D.set_float_fmt(ffmt)
    if tol is not None:
        tol = tol * D.epsilon()

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    if ffmt == 'gdual_vdouble':
        pytest.skip("Root-finding is ill-conceived with vectorised gduals")

    for _ in range(10):
        slope_list = D.array(
            np.copysign(np.random.uniform(0.9, 1.1, size=25),
                        np.random.uniform(-1, 1, size=25)))
        intercept_list = slope_list

        gt_root_list = -intercept_list / slope_list

        fun_list = [(lambda m, b: lambda x: m * x + b)(m, b)
                    for m, b in zip(slope_list, intercept_list)]

        assert (all(
            map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.epsilon(
            )), map((lambda x: x[0](x[1])), zip(fun_list, gt_root_list)))))

        root_list, success = de.utilities.optimizer.brentsrootvec(
            fun_list, [D.min(gt_root_list) - 1.,
                       D.max(gt_root_list) + 1.],
            tol,
            verbose=True)

        assert (np.all(D.to_numpy(success)))
        assert (np.allclose(D.to_numpy(D.to_float(gt_root_list)),
                            D.to_numpy(D.to_float(root_list)),
                            32 * D.epsilon(), 32 * D.epsilon()))

        assert (all(
            map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.epsilon(
            )), map((lambda x: x[0](x[1])), zip(fun_list, root_list)))))
コード例 #8
0
def test_brentsrootvec():
    for fmt in D.available_float_fmt():
        print("Set dtype to:", fmt)
        D.set_float_fmt(fmt)
        if fmt == 'gdual_vdouble':
            continue
        for _ in range(10):
            slope_list = D.array(
                np.copysign(np.random.uniform(0.9, 1.1, size=25),
                            np.random.uniform(-1, 1, size=25)))
            intercept_list = slope_list

            gt_root_list = -intercept_list / slope_list

            fun_list = [(lambda m, b: lambda x: m * x + b)(m, b)
                        for m, b in zip(slope_list, intercept_list)]

            assert (all(
                map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.
                     epsilon()),
                    map((lambda x: x[0](x[1])), zip(fun_list, gt_root_list)))))

            root_list, success = de.utilities.optimizer.brentsrootvec(
                fun_list, [D.min(gt_root_list) - 1.,
                           D.max(gt_root_list) + 1.],
                4 * D.epsilon(),
                verbose=True)

            assert (np.all(D.to_numpy(success)))
            assert (np.allclose(D.to_numpy(D.to_float(gt_root_list)),
                                D.to_numpy(D.to_float(root_list)),
                                32 * D.epsilon(), 32 * D.epsilon()))

            assert (all(
                map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.
                     epsilon()),
                    map((lambda x: x[0](x[1])), zip(fun_list, root_list)))))
コード例 #9
0
def test_torch_max_with_axis():
    a = np.array([[1.0, 2.0, 3.0], [0.0, 3.0, -1.0]])
    a_torch = D.array(a)
    assert (np.all(np.max(a, axis=1) == D.max(a_torch, axis=1).cpu().numpy()))
コード例 #10
0
 def do(self, A, b):
     x = D.solve_linear_system(A, b)
     assert (D.max(D.abs(D.to_float(A @ x - b))) <= 256 * D.epsilon())
コード例 #11
0
 def do(self, A):
     Q, R = D.qr(A)
     assert (D.max(D.abs(D.to_float(Q @ R - A))) <= 256 * D.epsilon())
コード例 #12
0
def test_event_detection_numerous_events(ffmt,
                                         integrator,
                                         use_richardson_extrapolation,
                                         device,
                                         dt,
                                         dense_output=False):
    if use_richardson_extrapolation and integrator.__implicit__:
        pytest.skip(
            "Richardson Extrapolation is too slow with implicit methods")
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(False)  # Enable if a test fails

        device = torch.device(device)

    print("Testing event detection for float format {}".format(D.float_fmt()))
    from .common import set_up_basic_system

    de_mat, rhs, analytic_soln, y_init, _, _ = set_up_basic_system(
        integrator, hook_jacobian=True)

    if D.backend() == 'torch':
        y_init = y_init.to(device)

    event_times = D.linspace(0, D.pi / 4, 32)

    class ev_proto:
        def __init__(self, ev_time, component):
            self.ev_time = ev_time
            self.component = component

        def __call__(self, t, y, **csts):
            return y[self.component] - analytic_soln(self.ev_time,
                                                     y_init)[self.component]

        def __repr__(self):
            return "<ev_proto({}, {})>".format(self.ev_time, self.component)

    events = [ev_proto(ev_t, 0) for ev_t in event_times]

    a = de.OdeSystem(rhs,
                     y0=y_init,
                     dense_output=dense_output,
                     t=(0, D.pi / 4),
                     dt=dt,
                     rtol=D.epsilon()**0.5,
                     atol=D.epsilon()**0.75)

    method = integrator
    if use_richardson_extrapolation:
        method = de.integrators.generate_richardson_integrator(method)

    with de.utilities.BlockTimer(section_label="Integrator Tests") as sttimer:
        a.set_method(method)
        print("Testing {} with dt = {:.4e}".format(a.integrator, a.dt))

        a.integrate(eta=True, events=events)

        print(a)
        print(a.events)
        print(len(events) - len(a.events))
        assert (len(events) - 3 <= len(a.events) <= len(events))
        for ev_detected in a.events:
            assert (D.max(
                D.abs(
                    ev_detected.event(ev_detected.t, ev_detected.y, **
                                      a.constants))) <= 4 * D.epsilon())
コード例 #13
0
def test_dense_output(ffmt, use_richardson_extrapolation):
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    print("Testing {} float format".format(D.float_fmt()))

    from . import common

    (de_mat, rhs, analytic_soln, y_init, dt, a) = common.set_up_basic_system()

    assert (a.integration_status == "Integration has not been run.")

    if use_richardson_extrapolation:
        a.method = de.integrators.generate_richardson_integrator(a.method)
    a.rtol = a.atol = D.epsilon()**0.75
    a.integrate()

    assert (a.integration_status == "Integration completed successfully.")

    assert (D.max(D.abs(a[0].y - analytic_soln(a[0].t, y_init))) <=
            4 * D.epsilon())
    assert (D.max(D.abs(a[0].t)) <= 4 * D.epsilon())
    assert (D.max(D.abs(a[-1].y - analytic_soln(a[-1].t, y_init))) <=
            10 * D.epsilon()**0.5)

    assert (D.max(D.abs(a[a[0].t].y - analytic_soln(a[0].t, y_init))) <=
            4 * D.epsilon())
    assert (D.max(D.abs(a[a[0].t].t)) <= 4 * D.epsilon())
    assert (D.max(D.abs(a[a[-1].t].y - analytic_soln(a[-1].t, y_init))) <=
            10 * D.epsilon()**0.5)

    assert (D.max(D.abs(D.stack(a[a[0].t:a[-1].t].y) - D.stack(a.y))) <=
            4 * D.epsilon())
    assert (D.max(D.abs(D.stack(a[:a[-1].t].y) - D.stack(a.y))) <=
            4 * D.epsilon())

    assert (D.max(D.abs(D.stack(a[a[0].t:a[-1].t:2].y) - D.stack(a.y[::2]))) <=
            4 * D.epsilon())
    assert (D.max(D.abs(D.stack(a[a[0].t::2].y) - D.stack(a.y[::2]))) <=
            4 * D.epsilon())
    assert (D.max(D.abs(D.stack(a[:a[-1].t:2].y) - D.stack(a.y[::2]))) <=
            4 * D.epsilon())

    np.random.seed(42)
    sample_points = D.array(np.random.uniform(a.t[0], a.t[-1], 1024))
    assert (D.max(
        D.abs(a.sol(sample_points) -
              analytic_soln(sample_points, y_init).T)).item() <= D.epsilon()**
            0.5)
コード例 #14
0
def test_dense_output():
    for ffmt in D.available_float_fmt():
        D.set_float_fmt(ffmt)

        print("Testing {} float format".format(D.float_fmt()))

        de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]])

        @de.rhs_prettifier("""[vx, -x+t]""")
        def rhs(t, state, k, **kwargs):
            return de_mat @ state + D.array([0.0, t])

        def analytic_soln(t, initial_conditions):
            c1 = initial_conditions[0]
            c2 = initial_conditions[1] - 1

            return D.stack([
                c2 * D.sin(D.to_float(D.asarray(t))) +
                c1 * D.cos(D.to_float(D.asarray(t))) + D.asarray(t),
                c2 * D.cos(D.to_float(D.asarray(t))) -
                c1 * D.sin(D.to_float(D.asarray(t))) + 1
            ])

        y_init = D.array([1., 0.])

        a = de.OdeSystem(rhs,
                         y0=y_init,
                         dense_output=True,
                         t=(0, 2 * D.pi),
                         dt=0.01,
                         rtol=D.epsilon()**0.5,
                         atol=D.epsilon()**0.5,
                         constants=dict(k=1.0))

        assert (a.integration_status() == "Integration has not been run.")

        a.integrate()

        assert (
            a.integration_status() == "Integration completed successfully.")

        assert (D.max(D.abs(a[0].y - analytic_soln(a[0].t, y_init))) <=
                4 * D.epsilon())
        assert (D.max(D.abs(a[0].t)) <= 4 * D.epsilon())
        assert (D.max(D.abs(a[-1].y - analytic_soln(a[-1].t, y_init))) <=
                10 * D.epsilon()**0.5)

        assert (D.max(D.abs(a[a[0].t].y - analytic_soln(a[0].t, y_init))) <=
                4 * D.epsilon())
        assert (D.max(D.abs(a[a[0].t].t)) <= 4 * D.epsilon())
        assert (D.max(D.abs(a[a[-1].t].y - analytic_soln(a[-1].t, y_init))) <=
                10 * D.epsilon()**0.5)

        assert (D.max(D.abs(a[a[0].t:a[-1].t].y - a.y)) <= 4 * D.epsilon())
        assert (D.max(D.abs(a[:a[-1].t].y - a.y)) <= 4 * D.epsilon())

        assert (D.max(D.abs(a[a[0].t:a[-1].t:2].y - a.y[::2])) <=
                4 * D.epsilon())
        assert (D.max(D.abs(a[a[0].t::2].y - a.y[::2])) <= 4 * D.epsilon())
        assert (D.max(D.abs(a[:a[-1].t:2].y - a.y[::2])) <= 4 * D.epsilon())
コード例 #15
0
@de.rhs_prettifier(
    equ_repr="[vx, -k*x/m]",
    md_repr=r"""
$$
\frac{dx}{dt} = \begin{bmatrix}
   0            & 1 \\
   -\frac{k}{m} & 0
   \end{bmatrix} \cdot \begin{bmatrix}x \\ v_x\end{bmatrix}
$$
"""
)
def rhs(t, state, k, m, **kwargs):
    return D.array([[0.0, 1.0], [-k/m,  0.0]])@state

y_init = D.array([1., 0.])

a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, 2*D.pi), dt=0.01, rtol=1e-9, atol=1e-9, constants=dict(k=1.0, m=1.0))

print(a)

a.integrate()

print(a)

print("If the integration was successful and correct, a[0].y and a[-1].y should be near identical.")
print("a[0].y  = {}".format(a[0].y))
print("a[-1].y = {}".format(a[-1].y))

print("Maximum difference from initial state after one oscillation cycle: {}".format(D.max(D.abs(a[0].y-a[-1].y))))
コード例 #16
0
def test_float_formats():
    for ffmt in D.available_float_fmt():
        D.set_float_fmt(ffmt)

        print("Testing {} float format".format(D.float_fmt()))

        de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]])

        @de.rhs_prettifier("""[vx, -x+t]""")
        def rhs(t, state, **kwargs):
            return de_mat @ state + D.array([0.0, t])

        def analytic_soln(t, initial_conditions):
            c1 = initial_conditions[0]
            c2 = initial_conditions[1] - 1

            return D.array([
                c2 * D.sin(t) + c1 * D.cos(t) + t,
                c2 * D.cos(t) - c1 * D.sin(t) + 1
            ])

        def kbinterrupt_cb(ode_sys):
            if ode_sys[-1][0] > D.pi:
                raise KeyboardInterrupt("Test Interruption and Catching")

        y_init = D.array([1., 0.])

        a = de.OdeSystem(rhs,
                         y0=y_init,
                         dense_output=True,
                         t=(0, 2 * D.pi),
                         dt=0.01,
                         rtol=D.epsilon()**0.5,
                         atol=D.epsilon()**0.5)

        with de.utilities.BlockTimer(
                section_label="Integrator Tests") as sttimer:
            for i in sorted(set(de.available_methods(False).values()),
                            key=lambda x: x.__name__):
                if "Heun-Euler" in i.__name__ and D.float_fmt(
                ) == "gdual_real128":
                    print(
                        "skipping {} due to ridiculous timestep requirements.".
                        format(i))
                    continue
                try:
                    a.set_method(i)
                    print("Testing {}".format(a.integrator))
                    try:
                        a.integrate(callback=kbinterrupt_cb, eta=True)
                    except KeyboardInterrupt as e:
                        pass
                    try:
                        a.integrate(eta=True)
                    except:
                        raise

                    max_diff = D.max(
                        D.abs(analytic_soln(a.t[-1], a.y[0]) - a.y[-1]))
                    if a.method.__adaptive__ and max_diff >= a.atol * 10 + D.epsilon(
                    ):
                        print(
                            "{} Failed with max_diff from analytical solution = {}"
                            .format(a.integrator, max_diff))
                        raise RuntimeError(
                            "Failed to meet tolerances for adaptive integrator {}"
                            .format(str(i)))
                    else:
                        print(
                            "{} Succeeded with max_diff from analytical solution = {}"
                            .format(a.integrator, max_diff))
                    a.reset()
                except Exception as e:
                    print(e)
                    raise RuntimeError(
                        "Test failed for integration method: {}".format(
                            a.integrator))
            print("")

        print("{} backend test passed successfully!".format(D.backend()))
コード例 #17
0
def test_float_formats_atypical_shape(ffmt, integrator,
                                      use_richardson_extrapolation, device):
    if use_richardson_extrapolation and integrator.__implicit__:
        pytest.skip(
            "Richardson Extrapolation is too slow with implicit methods")
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(False)  # Enable if a test fails

        device = torch.device(device)

    print("Testing {} float format".format(D.float_fmt()))

    from .common import set_up_basic_system

    de_mat, _, analytic_soln, y_init, dt, _ = set_up_basic_system(integrator)

    @de.rhs_prettifier("""[vx, -x+t]""")
    def rhs(t, state, **kwargs):
        nonlocal de_mat
        extra = D.array([0.0, t])
        if D.backend() == 'torch':
            de_mat = de_mat.to(state.device)
            extra = extra.to(state.device)
        return D.sum(de_mat[:, :, None, None, None] * state,
                     axis=1) + extra[:, None, None, None]

    y_init = D.array([[[[1., 0.]] * 1] * 1] * 3).T

    print(rhs(0.0, y_init).shape)

    if D.backend() == 'torch':
        y_init = y_init.contiguous().to(device)

    a = de.OdeSystem(rhs,
                     y0=y_init,
                     dense_output=False,
                     t=(0, D.pi / 4),
                     dt=D.pi / 64,
                     rtol=D.epsilon()**0.5,
                     atol=D.epsilon()**0.5)

    method = integrator
    method_tolerance = a.atol * 10 + D.epsilon()
    if use_richardson_extrapolation:
        method = de.integrators.generate_richardson_integrator(method)
        method_tolerance = method_tolerance * 5

    with de.utilities.BlockTimer(section_label="Integrator Tests") as sttimer:
        a.set_method(method)
        print("Testing {} with dt = {:.4e}".format(a.integrator, a.dt))

        a.integrate(eta=True)

        max_diff = D.max(D.abs(analytic_soln(a.t[-1], y_init) - a.y[-1]))
        if a.integrator.adaptive:
            assert max_diff <= method_tolerance, "{} Failed with max_diff from analytical solution = {}".format(
                a.integrator, max_diff)
        a.reset()
    print("")

    print("{} backend test passed successfully!".format(D.backend()))
コード例 #18
0
 def do(self, A):
     Ainv = D.matrix_inv(A)
     assert (D.max(D.abs(D.to_float(Ainv @ A - D.eye(A.shape[0])))) <=
             256 * D.epsilon())