コード例 #1
0
class face_detect(object):
    def __init__(self):
        self.load_model()

    def load_model(self):
        thresh = [0.6, 0.7, 0.7]
        min_face_size = 20
        stride = 2
        slide_window = False
        detectors = [None, None, None]
        prefix = [
            './weight/PNet_landmark/PNet', './weight/RNet_landmark/RNet',
            './weight/ONet_landmark/ONet'
        ]
        epoch = [18, 14, 16]
        model_path = ['%s-%s' % (x, y) for x, y in zip(prefix, epoch)]
        PNet, RNet, ONet = FcnDetector(P_Net, model_path[0]), Detector(R_Net, 24, 1, model_path[1]), \
                           Detector(O_Net, 48, 1, model_path[2])
        detectors[0], detectors[1], detectors[2] = PNet, RNet, ONet
        self.mtcnn_detector = MtcnnDetector(detectors=detectors,
                                            min_face_size=min_face_size,
                                            stride=stride,
                                            threshold=thresh,
                                            slide_window=slide_window)

    def detect(self, img, show_pic=False):
        """
        :param img: BGR格式的图片
        :param show_pic: 是否展示图片
        :return:boxes_c type is ndarray, shape is (M, 5)
        """
        boxes_c, landmarks = self.mtcnn_detector.detect(img)
        if show_pic:
            for i in range(boxes_c.shape[0]):
                bbox = boxes_c[i, :4]
                score = boxes_c[i, 4]
                corpbbox = [
                    int(bbox[0]),
                    int(bbox[1]),
                    int(bbox[2]),
                    int(bbox[3])
                ]
                cv2.rectangle(frame, (corpbbox[0], corpbbox[1]),
                              (corpbbox[2], corpbbox[3]), (255, 0, 0), 2)
                cv2.putText(frame, '{:.3f}'.format(score),
                            (corpbbox[0], corpbbox[1] - 2),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 3)

            for i in range(landmarks.shape[0]):
                for j in range(int(len(landmarks[i]) / 2)):
                    cv2.circle(frame, (int(landmarks[i][2 * j]),
                                       int(int(landmarks[i][2 * j + 1]))), 2,
                               (0, 0, 255))
                cv2.putText(frame, 'handsome men', (30, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (127, 255, 212), 2)
                cv2.imshow("", frame)
            if cv2.waitKey(0) & 0xFF == ord('q'):
                cv2.destroyAllWindows()
        return boxes_c
コード例 #2
0
ファイル: test.py プロジェクト: StuMisaka/MTCNN-FaceDetection
mtcnn_detector = MtcnnDetector(detectors=detectors,
                               min_face_size=min_face_size,
                               stride=stride,
                               threshold=thresh)
#设定输出路径
out_path = config.out_path
#两种输入方式,1为图片,2为摄像头
if config.input_mode == '1':
    #设定测试图片的路径
    path = config.test_dir
    #print(path)
    for item in os.listdir(path):
        img_path = os.path.join(path, item)
        img = cv2.imread(img_path)
        #获知图片中的人脸框和关键点
        boxes_c, landmarks = mtcnn_detector.detect(img)
        for i in range(boxes_c.shape[0]):
            bbox = boxes_c[i, :4]
            score = boxes_c[i, 4]
            corpbbox = [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])]
            #画人脸框
            cv2.rectangle(img, (corpbbox[0], corpbbox[1]),
                          (corpbbox[2], corpbbox[3]), (255, 0, 0), 1)
            #判别为人脸的置信度
            cv2.putText(img, '{:.2f}'.format(score),
                        (corpbbox[0], corpbbox[1] - 2),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
        #画关键点
        for i in range(landmarks.shape[0]):
            for j in range(len(landmarks[i]) // 2):
                cv2.circle(img, (int(
コード例 #3
0
start_path = '/home/sherk/Workspace/mtcnn-pytorch/'
filenames = os.listdir(start_path + 'img')

missing_detection = 0
false_detection = 0
all_detection = 0
all_labels = 0

for filename in tqdm(filenames):
    iou_threshold = 0.4

    image = start_path + 'img/{}'.format(filename)
    img = cv2.imread(image)

    boxes_det, _ = mtcnn_detector.detect(img)
    boxes_det = boxes_det.astype(np.int)


    xml_file = start_path + 'anno/{}.xml'.\
      format( '.'.join( filename.split('.')[:-1] ) )
    boxes_lab = boxes_extract(xml_file)

    if boxes_lab is None:
        if boxes_det is not None:
            false_detection += len(boxes_det)
            all_detection += len(boxes_det)
        continue

    if boxes_det.shape[0] == 0:
        if boxes_lab is not None:
コード例 #4
0
    return True if ((xs > bbox[0]).all() & (xs < bbox[2]).all()) &\
        ((ys > bbox[1]).all() & (ys < bbox[3]).all()) else False


#%% generate the landmark file
celeba_landmark_list = open('data/celeba_trainImageList.txt', 'w')
err_idx = 0

for i in tqdm(range(sub_labels.shape[0])):
    src_img = join(img_dir, sub_labels.image_id.iloc[i])
    src_write = join('Img/img_celeba', sub_labels.image_id.iloc[i])
    # des_img = join(out_path, sub_labels.image_id.iloc[i])

    img = cv2.imread(src_img)

    bboxes, landmarks = mtcnn_detector.detect(img)

    label_landmark = sub_labels.iloc[i, -10:].values

    if (bboxes.shape[0] > 0):
        if (in_box(label_landmark, bboxes[0, :])):
            bboxes_list = [
                str(x) for x in list(bboxes[0, [0, 2, 1, 3]].astype(np.int))
            ]
            landmarks_list = [str(x) for x in list(label_landmark)]

            ln = ' '.join([src_write] + bboxes_list + landmarks_list) + '\n'

            celeba_landmark_list.write(ln)
        else:
            err_idx += 1
コード例 #5
0
ファイル: detect_video.py プロジェクト: CYHYCY/dizheng
                               min_face_size=min_face_size,
                               stride=stride,
                               threshold=thresh,
                               slide_window=slide_window)

video_capture = cv2.VideoCapture(0)
video_capture.set(3, 500)
video_capture.set(4, 600)
corpbbox = None
while True:
    # fps = video_capture.get(cv2.CAP_PROP_FPS)
    t1 = cv2.getTickCount()
    ret, frame = video_capture.read()
    if ret:
        image = np.array(frame)
        boxes_c, landmarks = mtcnn_detector.detect(image)

        print(landmarks.shape)
        t2 = cv2.getTickCount()
        t = (t2 - t1) / cv2.getTickFrequency()
        fps = 1.0 / t
        for i in range(boxes_c.shape[0]):
            bbox = boxes_c[i, :4]
            score = boxes_c[i, 4]
            corpbbox = [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])]
            # if score > thresh:
            cv2.rectangle(frame, (corpbbox[0], corpbbox[1]),
                          (corpbbox[2], corpbbox[3]), (255, 0, 0), 2)
            cv2.putText(frame, '{:.3f}'.format(score),
                        (corpbbox[0], corpbbox[1] - 2),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 3)