コード例 #1
0
 def __init__(self,
              MAX_HORIZONTAL_GAP=30,
              MIN_V_OVERLAPS=0.6,
              MIN_SIZE_SIM=0.6):
     """
     pass
     """
     self.text_proposal_connector = TextProposalConnector(
         MAX_HORIZONTAL_GAP, MIN_V_OVERLAPS, MIN_SIZE_SIM)
コード例 #2
0
class TextDetector:
    """
        Detect text from an image
    """
    def __init__(self,
                 MAX_HORIZONTAL_GAP=30,
                 MIN_V_OVERLAPS=0.6,
                 MIN_SIZE_SIM=0.6):
        """
        pass
        """
        self.text_proposal_connector = TextProposalConnector(
            MAX_HORIZONTAL_GAP, MIN_V_OVERLAPS, MIN_SIZE_SIM)

    def detect(self,
               text_proposals,
               scores,
               size,
               TEXT_PROPOSALS_MIN_SCORE=0.7,
               TEXT_PROPOSALS_NMS_THRESH=0.3,
               TEXT_LINE_NMS_THRESH=0.3,
               MIN_RATIO=1.0,
               LINE_MIN_SCORE=0.8,
               TEXT_PROPOSALS_WIDTH=5,
               MIN_NUM_PROPOSALS=1):
        """
        Detecting texts from an image
        :return: the bounding boxes of the detected texts
        @@param:TEXT_PROPOSALS_MIN_SCORE:TEXT_PROPOSALS_MIN_SCORE=0.7##过滤字符box阀值
        @@param:TEXT_PROPOSALS_NMS_THRESH:TEXT_PROPOSALS_NMS_THRESH=0.3##nms过滤重复字符box
        @@param:TEXT_LINE_NMS_THRESH:TEXT_LINE_NMS_THRESH=0.3##nms过滤行文本重复过滤阀值
        @@param:MIN_RATIO:MIN_RATIO=1.0#0.01 ##widths/heights宽度与高度比例
        @@param:LINE_MIN_SCORE:##行文本置信度
        @@param:TEXT_PROPOSALS_WIDTH##每个字符的默认最小宽度
        @@param:MIN_NUM_PROPOSALS,MIN_NUM_PROPOSALS=1##最小字符数
        
        """
        #text_proposals, scores=self.text_proposal_detector.detect(im, cfg.MEAN)
        keep_inds = np.where(scores > TEXT_PROPOSALS_MIN_SCORE)[0]  ###

        text_proposals, scores = text_proposals[keep_inds], scores[keep_inds]

        sorted_indices = np.argsort(scores.ravel())[::-1]
        text_proposals, scores = text_proposals[sorted_indices], scores[
            sorted_indices]

        # nms for text proposals
        if len(text_proposals) > 0:
            keep_inds = nms(np.hstack((text_proposals, scores)),
                            TEXT_PROPOSALS_NMS_THRESH)  ##nms 过滤重复的box
            text_proposals, scores = text_proposals[keep_inds], scores[
                keep_inds]

            scores = normalize(scores)

            text_lines = self.text_proposal_connector.get_text_lines(
                text_proposals, scores, size)  ##合并文本行
            return text_lines
        else:
            return []
コード例 #3
0
class TextDetector:
    """
        Detect text from an image
    """
    def __init__(self,
                 MAX_HORIZONTAL_GAP=30,
                 MIN_V_OVERLAPS=0.6,
                 MIN_SIZE_SIM=0.6):
        """
        pass
        """
        self.text_proposal_connector = TextProposalConnector(
            MAX_HORIZONTAL_GAP, MIN_V_OVERLAPS, MIN_SIZE_SIM)

    def detect(self,
               text_proposals,
               scores,
               size,
               TEXT_PROPOSALS_MIN_SCORE=0.3,
               TEXT_PROPOSALS_NMS_THRESH=0.3,
               TEXT_LINE_NMS_THRESH=0.3,
               MIN_RATIO=1.0,
               LINE_MIN_SCORE=0.8,
               TEXT_PROPOSALS_WIDTH=5,
               MIN_NUM_PROPOSALS=1):
        """
        :param text_proposals:
        :param scores:
        :param size:
        :param TEXT_PROPOSALS_MIN_SCORE 过滤字符box阀值
        :param TEXT_PROPOSALS_NMS_THRESH: nms过滤重叠box
        :param TEXT_LINE_NMS_THRESH: nms过滤行文本重复过滤阀值
        :param MIN_RATIO: widths/heights宽度与高度比例
        :param LINE_MIN_SCORE: 行文本置信度
        :param TEXT_PROPOSALS_WIDTH: 每个文本框的默认最小宽度
        :param MIN_NUM_PROPOSALS: 最小bbox数
        :return: the bounding boxes of the detected texts after some filter
        """
        sorted_index = np.argsort(scores.ravel())[::-1]
        text_proposals, scores = text_proposals[sorted_index], scores[
            sorted_index]

        # nms for text proposals
        if len(text_proposals) > 0:
            keep_inds = nms(np.hstack((text_proposals, scores)),
                            TEXT_PROPOSALS_NMS_THRESH)  ##nms 过滤重复的box
            text_proposals, scores = text_proposals[keep_inds], scores[
                keep_inds]

            scores = normalize(scores)

            text_boxes = self.text_proposal_connector.get_text_lines(
                text_proposals, scores, size)  ##合并文本行
            return text_boxes
        else:
            return []