コード例 #1
0
ファイル: fast_rcnn.py プロジェクト: Jakaria08/Detectron
 def _distribute_rois_over_fpn_levels(rois_blob_name):
     """Distribute rois over the different FPN levels."""
     # Get target level for each roi
     # Recall blob rois are in (batch_idx, x1, y1, x2, y2) format, hence take
     # the box coordinates from columns 1:5
     target_lvls = fpn.map_rois_to_fpn_levels(
         blobs[rois_blob_name][:, 1:5], lvl_min, lvl_max
     )
     # Add per FPN level roi blobs named like: <rois_blob_name>_fpn<lvl>
     fpn.add_multilevel_roi_blobs(
         blobs, rois_blob_name, blobs[rois_blob_name], target_lvls, lvl_min,
         lvl_max
     )
コード例 #2
0
ファイル: test.py プロジェクト: yiningzeng/Detectron
def _add_multilevel_rois_for_test(blobs, name):
    """Distributes a set of RoIs across FPN pyramid levels by creating new level
    specific RoI blobs.

    Arguments:
        blobs (dict): dictionary of blobs
        name (str): a key in 'blobs' identifying the source RoI blob

    Returns:
        [by ref] blobs (dict): new keys named by `name + 'fpn' + level`
            are added to dict each with a value that's an R_level x 5 ndarray of
            RoIs (see _get_rois_blob for format)
    """
    lvl_min = cfg.FPN.ROI_MIN_LEVEL
    lvl_max = cfg.FPN.ROI_MAX_LEVEL
    lvls = fpn.map_rois_to_fpn_levels(blobs[name][:, 1:5], lvl_min, lvl_max)
    fpn.add_multilevel_roi_blobs(blobs, name, blobs[name], lvls, lvl_min,
                                 lvl_max)
コード例 #3
0
 def _distribute_rois_over_fpn_levels(rois_blob_name):
     """Distribute rois over the different FPN levels."""
     # Get target level for each roi
     # Recall blob rois are in (batch_idx, x1, y1, x2, y2) format, hence take
     # the box coordinates from columns 1:5
     target_lvls = fpn.map_rois_to_fpn_levels(blobs[rois_blob_name][:, 1:5],
                                              lvl_min, lvl_max)
     ws = blobs[rois_blob_name][:, 3] - blobs[rois_blob_name][:, 1] + 1
     hs = blobs[rois_blob_name][:, 4] - blobs[rois_blob_name][:, 2] + 1
     areas = ws * hs
     assert np.all(
         areas >= 0
     ), 'Negative areas founds when add multilevel rois, negative rate: {} / {}, negative anchor: {}, idx of anchor: {}'.format(
         np.where(areas < 0)[0].shape, areas.shape[0],
         blobs[rois_blob_name][np.where(areas < 0)[0], :],
         np.where(areas < 0)[0])
     fpn.add_multilevel_roi_blobs(blobs, rois_blob_name,
                                  blobs[rois_blob_name], target_lvls,
                                  lvl_min, lvl_max)
コード例 #4
0
ファイル: test.py プロジェクト: Jakaria08/Detectron
def _add_multilevel_rois_for_test(blobs, name):
    """Distributes a set of RoIs across FPN pyramid levels by creating new level
    specific RoI blobs.

    Arguments:
        blobs (dict): dictionary of blobs
        name (str): a key in 'blobs' identifying the source RoI blob

    Returns:
        [by ref] blobs (dict): new keys named by `name + 'fpn' + level`
            are added to dict each with a value that's an R_level x 5 ndarray of
            RoIs (see _get_rois_blob for format)
    """
    lvl_min = cfg.FPN.ROI_MIN_LEVEL
    lvl_max = cfg.FPN.ROI_MAX_LEVEL
    lvls = fpn.map_rois_to_fpn_levels(blobs[name][:, 1:5], lvl_min, lvl_max)
    fpn.add_multilevel_roi_blobs(
        blobs, name, blobs[name], lvls, lvl_min, lvl_max
    )
コード例 #5
0
def distribute(rois, label_blobs, outputs, train):
    """To understand the output blob order see return value of
    detectron.roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=False)
    """
    lvl_min = cfg.FPN.ROI_MIN_LEVEL
    lvl_max = cfg.FPN.ROI_MAX_LEVEL
    lvls = fpn.map_rois_to_fpn_levels(rois[:, 1:5], lvl_min, lvl_max)

    outputs[0].reshape(rois.shape)
    outputs[0].data[...] = rois

    # Create new roi blobs for each FPN level
    # (See: modeling.FPN.add_multilevel_roi_blobs which is similar but annoying
    # to generalize to support this particular case.)
    rois_idx_order = np.empty((0, ))
    for output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)):
        idx_lvl = np.where(lvls == lvl)[0]
        blob_roi_level = rois[idx_lvl, :]
        outputs[output_idx + 1].reshape(blob_roi_level.shape)
        outputs[output_idx + 1].data[...] = blob_roi_level
        rois_idx_order = np.concatenate((rois_idx_order, idx_lvl))
    rois_idx_restore = np.argsort(rois_idx_order)
    blob_utils.py_op_copy_blob(rois_idx_restore.astype(np.int32), outputs[-1])
コード例 #6
0
def distribute(rois, label_blobs, outputs, train):
    """To understand the output blob order see return value of
    detectron.roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=False)
    """
    lvl_min = cfg.FPN.ROI_MIN_LEVEL
    lvl_max = cfg.FPN.ROI_MAX_LEVEL
    lvls = fpn.map_rois_to_fpn_levels(rois[:, 1:5], lvl_min, lvl_max)

    outputs[0].reshape(rois.shape)
    outputs[0].data[...] = rois

    # Create new roi blobs for each FPN level
    # (See: modeling.FPN.add_multilevel_roi_blobs which is similar but annoying
    # to generalize to support this particular case.)
    rois_idx_order = np.empty((0, ))
    for output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)):
        idx_lvl = np.where(lvls == lvl)[0]
        blob_roi_level = rois[idx_lvl, :]
        outputs[output_idx + 1].reshape(blob_roi_level.shape)
        outputs[output_idx + 1].data[...] = blob_roi_level
        rois_idx_order = np.concatenate((rois_idx_order, idx_lvl))
    rois_idx_restore = np.argsort(rois_idx_order)
    blob_utils.py_op_copy_blob(rois_idx_restore.astype(np.int32), outputs[-1])