コード例 #1
0
def build_as_torch_loader(root, mode="train", batch_size=16, num_workers=0):
    if mode == "train":
        train_dataset = cgrcnn_dataset_torch(root, mode=mode)
        train_sampler = torch.utils.data.RandomSampler(train_dataset,
                                                       replacement=False,
                                                       num_samples=None,
                                                       generator=None)
        trainloader = build_batch_data_loader(dataset=train_dataset,
                                              sampler=train_sampler,
                                              total_batch_size=batch_size,
                                              aspect_ratio_grouping=False,
                                              num_workers=num_workers)
        return trainloader
    elif mode == "test":
        test_dataset = cgrcnn_dataset_torch(root, mode=mode)
        test_sampler = torch.utils.data.RandomSampler(test_dataset,
                                                      replacement=False,
                                                      num_samples=None,
                                                      generator=None)
        testloader = build_batch_data_loader(dataset=test_dataset,
                                             sampler=test_sampler,
                                             total_batch_size=batch_size,
                                             aspect_ratio_grouping=False,
                                             num_workers=num_workers)
        return testloader
コード例 #2
0
def build_custom_train_loader(cfg, mapper=None):
    """
    Modified from detectron2.data.build.build_custom_train_loader, but supports
    different samplers
    """
    source_aware = cfg.DATALOADER.SOURCE_AWARE
    if source_aware:
        dataset_dicts = get_detection_dataset_dicts_with_source(
            cfg.DATASETS.TRAIN,
            filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
            min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
            if cfg.MODEL.KEYPOINT_ON else 0,
            proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN
            if cfg.MODEL.LOAD_PROPOSALS else None,
        )
        sizes = [0 for _ in range(len(cfg.DATASETS.TRAIN))]
        for d in dataset_dicts:
            sizes[d['dataset_source']] += 1
        print('dataset sizes', sizes)
    else:
        dataset_dicts = get_detection_dataset_dicts(
            cfg.DATASETS.TRAIN,
            filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
            min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
            if cfg.MODEL.KEYPOINT_ON else 0,
            proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN
            if cfg.MODEL.LOAD_PROPOSALS else None,
        )
    dataset = DatasetFromList(dataset_dicts, copy=False)

    if mapper is None:
        assert 0
        # mapper = DatasetMapper(cfg, True)
    dataset = MapDataset(dataset, mapper)

    sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
    logger = logging.getLogger(__name__)
    logger.info("Using training sampler {}".format(sampler_name))
    # TODO avoid if-else?
    if sampler_name == "TrainingSampler":
        sampler = TrainingSampler(len(dataset))
    elif sampler_name == "MultiDatasetSampler":
        assert source_aware
        sampler = MultiDatasetSampler(cfg, sizes, dataset_dicts)
    elif sampler_name == "RepeatFactorTrainingSampler":
        repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
            dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD)
        sampler = RepeatFactorTrainingSampler(repeat_factors)
    elif sampler_name == "ClassAwareSampler":
        sampler = ClassAwareSampler(dataset_dicts)
    else:
        raise ValueError("Unknown training sampler: {}".format(sampler_name))

    return build_batch_data_loader(
        dataset,
        sampler,
        cfg.SOLVER.IMS_PER_BATCH,
        aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING,
        num_workers=cfg.DATALOADER.NUM_WORKERS,
    )
コード例 #3
0
ファイル: build.py プロジェクト: wenjun90/DETR.detectron2
def build_detection_train_loader(cfg: CfgNode, mapper=None):
    """
    A data loader is created in a way similar to that of Detectron2.
    The main differences are:
     - it allows to combine datasets with different but compatible object category sets

    The data loader is created by the following steps:
    1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts.
    2. Start workers to work on the dicts. Each worker will:
        * Map each metadata dict into another format to be consumed by the model.
        * Batch them by simply putting dicts into a list.
    The batched ``list[mapped_dict]`` is what this dataloader will return.

    Args:
        cfg (CfgNode): the config
        mapper (callable): a callable which takes a sample (dict) from dataset and
            returns the format to be consumed by the model.
            By default it will be `DatasetMapper(cfg, True)`.

    Returns:
        an infinite iterator of training data
    """

    _add_category_whitelists_to_metadata(cfg)
    _add_category_maps_to_metadata(cfg)
    dataset_dicts = combine_detection_dataset_dicts(
        cfg.DATASETS.TRAIN,
        keep_instance_predicate=_get_train_keep_instance_predicate(cfg),
        proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
    )
    dataset = DatasetFromList(dataset_dicts, copy=False)

    if mapper is None:
        mapper = DatasetMapper(cfg, True)
    dataset = MapDataset(dataset, mapper)

    sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
    logger = logging.getLogger(__name__)
    logger.info("Using training sampler {}".format(sampler_name))
    if sampler_name == "TrainingSampler":
        sampler = TrainingSampler(len(dataset))
    elif sampler_name == "RepeatFactorTrainingSampler":
        repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
            dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD
        )
        sampler = RepeatFactorTrainingSampler(repeat_factors)
    else:
        raise ValueError("Unknown training sampler: {}".format(sampler_name))

    return build_batch_data_loader(
        dataset,
        sampler,
        cfg.SOLVER.IMS_PER_BATCH,
        aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING,
        num_workers=cfg.DATALOADER.NUM_WORKERS,
    )
コード例 #4
0
ファイル: build.py プロジェクト: zhoumeiling233/FewX
def build_detection_train_loader(cfg, mapper=None):
    """
    A data loader is created by the following steps:
    1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts.
    2. Coordinate a random shuffle order shared among all processes (all GPUs)
    3. Each process spawn another few workers to process the dicts. Each worker will:
       * Map each metadata dict into another format to be consumed by the model.
       * Batch them by simply putting dicts into a list.
    The batched ``list[mapped_dict]`` is what this dataloader will yield.
    Args:
        cfg (CfgNode): the config
        mapper (callable): a callable which takes a sample (dict) from dataset and
            returns the format to be consumed by the model.
            By default it will be `DatasetMapper(cfg, True)`.
    Returns:
        an infinite iterator of training data
    """
    dataset_dicts = fsod_get_detection_dataset_dicts(
        cfg.DATASETS.TRAIN,
        filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
        min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
        if cfg.MODEL.KEYPOINT_ON else 0,
        proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN
        if cfg.MODEL.LOAD_PROPOSALS else None,
    )
    dataset = DatasetFromList(dataset_dicts, copy=False)

    if mapper is None:
        mapper = DatasetMapper(cfg, True)
    dataset = MapDataset(dataset, mapper)

    sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
    logger = logging.getLogger(__name__)
    logger.info("Using training sampler {}".format(sampler_name))
    # TODO avoid if-else?
    if sampler_name == "TrainingSampler":
        sampler = TrainingSampler(len(dataset))
    elif sampler_name == "RepeatFactorTrainingSampler":
        repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
            dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD)
        sampler = RepeatFactorTrainingSampler(repeat_factors)
    else:
        raise ValueError("Unknown training sampler: {}".format(sampler_name))
    return build_batch_data_loader(
        dataset,
        sampler,
        cfg.SOLVER.IMS_PER_BATCH,
        aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING,
        num_workers=cfg.DATALOADER.NUM_WORKERS,
    )
コード例 #5
0
def build_detection_semisup_train_loader(cfg, mapper=None):

    dataset_dicts = get_detection_dataset_dicts(
        cfg.DATASETS.TRAIN,
        filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
        min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
        if cfg.MODEL.KEYPOINT_ON else 0,
        proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN
        if cfg.MODEL.LOAD_PROPOSALS else None,
    )

    # Divide into labeled and unlabeled sets according to supervision percentage
    label_dicts, unlabel_dicts = divide_label_unlabel(
        dataset_dicts,
        cfg.DATALOADER.SUP_PERCENT,
        cfg.DATALOADER.RANDOM_DATA_SEED,
        cfg.DATALOADER.RANDOM_DATA_SEED_PATH,
    )

    dataset = DatasetFromList(label_dicts, copy=False)

    if mapper is None:
        mapper = DatasetMapper(cfg, True)
    dataset = MapDataset(dataset, mapper)

    sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
    logger = logging.getLogger(__name__)
    logger.info("Using training sampler {}".format(sampler_name))

    if sampler_name == "TrainingSampler":
        sampler = TrainingSampler(len(dataset))
    elif sampler_name == "RepeatFactorTrainingSampler":
        repeat_factors = (
            RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
                label_dicts, cfg.DATALOADER.REPEAT_THRESHOLD))
        sampler = RepeatFactorTrainingSampler(repeat_factors)
    else:
        raise ValueError("Unknown training sampler: {}".format(sampler_name))

    # list num of labeled and unlabeled
    logger.info("Number of training samples " + str(len(dataset)))
    logger.info("Supervision percentage " + str(cfg.DATALOADER.SUP_PERCENT))

    return build_batch_data_loader(
        dataset,
        sampler,
        cfg.SOLVER.IMS_PER_BATCH,
        aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING,
        num_workers=cfg.DATALOADER.NUM_WORKERS,
    )
コード例 #6
0
ファイル: build.py プロジェクト: vlfom/CSD-detectron2
def build_detection_train_loader(cfg):
    """Builds a data loader for the baseline trainer with support of training on the subset of labeled data only.

    Most of code comes from `d2.data.build.build_detection_train_loader()`, see it for more details.
    """

    # CSD: check config is supported
    assert cfg.DATALOADER.SAMPLER_TRAIN == "TrainingSampler", "Unsupported training sampler: {}".format(
        cfg.DATALOADER.SAMPLER_TRAIN)

    # Original code
    dataset = get_detection_dataset_dicts(
        cfg.DATASETS.TRAIN,
        filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
        min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
        if cfg.MODEL.KEYPOINT_ON else 0,
        proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN
        if cfg.MODEL.LOAD_PROPOSALS else None,
    )

    # CSD: subsample the dataset if needed
    dataset = check_subsample_dataset(dataset, cfg)

    if comm.is_main_process():  # Log counts
        logger = setup_logger(name=__name__)
        logger.debug("Number of images in the dataset: {}".format(
            len(dataset)))
        _log_api_usage("dataset." + cfg.DATASETS.TRAIN[0])

    # Original code
    mapper = DatasetMapper(cfg, True)

    sampler = TrainingSampler(len(dataset))

    dataset = DatasetFromList(dataset, copy=False)
    dataset = MapDataset(dataset, mapper)
    sampler = TrainingSampler(len(dataset))
    assert isinstance(sampler, torch.utils.data.sampler.Sampler)

    return build_batch_data_loader(
        dataset,
        sampler,
        cfg.SOLVER.IMS_PER_BATCH,
        aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING,
        num_workers=cfg.DATALOADER.NUM_WORKERS,
    )
コード例 #7
0
        return len(self.sample_name)


if __name__ == "__main__":
    batch_size = 4
    np.random.seed(12138)

    cwd = os.getcwd()
    root = cwd + "/data/training_data/"
    # root = "/media/fanuc/35B4BBB7636A09EB/Xinghao/ContrastiveGrasp/data/training_data/"

    train_dataset = cgrcnn_dataset_torch(root, mode="train")

    train_sampler = torch.utils.data.RandomSampler(train_dataset,
                                                   replacement=False,
                                                   num_samples=None,
                                                   generator=None)
    trainloader = build_batch_data_loader(dataset=train_dataset,
                                          sampler=train_sampler,
                                          total_batch_size=batch_size,
                                          aspect_ratio_grouping=False,
                                          num_workers=8)
    img = []

    for i, inputs in enumerate(trainloader, 0):
        img += [input_[0]["image"][0] for input_ in inputs]
        if i == 250:
            count = len(img)
            img_sum = torch.stack(img, dim=0).sum(dim=0) / count
            mean, std = torch.mean(img_sum), torch.std(img_sum)
    print("OK")